Solveeit Logo

Question

Question: Prove that \(\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\...

Prove that tan3θ1+tan2θ+cot3θ1+cot2θ=12sin2θcos2θsinθcosθ\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }=\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }

Explanation

Solution

Hint: Convert L.H.S. into sines and cosines using the identities tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }. Use the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 to simplify the expression. Hence prove L.H.S =sin3θcosθ+cos3θsinθ=\dfrac{{{\sin }^{3}}\theta }{\cos \theta }+\dfrac{{{\cos }^{3}}\theta }{\sin \theta }.

Complete step-by-step answer:
Take sinθcosθ\sin \theta \cos \theta as L.C.M. and use the identity a4+b4=(a2+b2)22a2b2{{a}^{4}}+{{b}^{4}}={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}-2{{a}^{2}}{{b}^{2}} to simplify the resulting expression. Hence prove that L.H.S. is equal to R.H.S.

We have L.H.S. =tan3θ1+tan2θ+cot3θ1+cot2θ=\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }
Using tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }, we get
L.H.S. =sin3θcos3θ1+sin2θcos2θ+cos3θsin3θ1+cos2θsin2θ=\dfrac{\dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }}{1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }}+\dfrac{\dfrac{{{\cos }^{3}}\theta }{{{\sin }^{3}}\theta }}{1+\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }}
Multiplying the numerator and the denominator of the first expression by cos3θ{{\cos }^{3}}\theta and that of the second expression by sin3θ{{\sin }^{3}}\theta , we get
L.H.S. =sin3θcosθ(sin2θ+cos2θ)+cos3θsinθ(cos2θ+sin2θ)=\dfrac{{{\sin }^{3}}\theta }{\cos \theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}+\dfrac{{{\cos }^{3}}\theta }{\sin \theta \left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}
We know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Using the above identity, we get
L.H.S. =sin3θcosθ+cos3θsinθ=\dfrac{{{\sin }^{3}}\theta }{\cos \theta }+\dfrac{{{\cos }^{3}}\theta }{\sin \theta }
Taking sinθcosθ\sin \theta \cos \theta as L.C.M., we get
L.H.S. =cos4θ+sin4θcosθsinθ=\dfrac{{{\cos }^{4}}\theta +{{\sin }^{4}}\theta }{\cos \theta \sin \theta }
Adding and subtracting 2sin2θcos2θ2{{\sin }^{2}}\theta {{\cos }^{2}}\theta in the numerator of the above expression, we get
L.H.S. =cos4θ+2sin2θcos2θ+sin4θ2sin2θcos2θcosθsinθ=\dfrac{{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\cos \theta \sin \theta }
We know that a2+2ab+b2=(a+b)2{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}
Using the above identity, we get
L.H.S. =(cos2θ+sin2θ)2sin2θcos2θsinθcosθ=\dfrac{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }
We know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Using the above identity, we get
L.H.S. =12sin2θcos2θsinθcosθ=\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }
Hence, we have
L.H.S = R.H.S

Note: [1] Dealing with sines and cosines is usually easier than dealing with tangents, cotangents, secants and cosecants. So while proving a trigonometric identity, we usually convert tangents, cotangents, secants and cosecants into sines and cosines.
[2] Alternative solution.
We know that 1+tan2θ=sec2θ1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta and 1+cot2θ=csc2θ1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta
Hence, we have
L.H.S =tan3θcos2θ+cot3θcsc2θ={{\tan }^{3}}\theta {{\cos }^{2}}\theta +{{\cot }^{3}}\theta {{\csc }^{2}}\theta
We know that tanθcosθ=sinθ\tan \theta \cos \theta =\sin \theta and cotθcscθ=cosθ\cot \theta \csc \theta =\cos \theta
Hence, we have
L.H.S =sin2θtanθ+cos2θcotθ={{\sin }^{2}}\theta \tan \theta +{{\cos }^{2}}\theta \cot \theta
Hence, we have L.H.S =sin3θcosθ+cos3θsinθ=\dfrac{{{\sin }^{3}}\theta }{\cos \theta }+\dfrac{{{\cos }^{3}}\theta }{\sin \theta }, which is the same as obtained above. Proceeding similarly, we can prove L.H.S = R.H.S.