Solveeit Logo

Question

Question: Prove that: \(\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x...

Prove that:
sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x=cot2x\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x

Explanation

Solution

For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinAsinB=2sin(AB2)cos(A+B2)\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
We simplify in such a manner that it results in the equivalent value to the other side expression.

_Complete step-by-step answer: _
Given data: sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x=cot2x\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x
Taking the numerator of the expression in the left-hand side
sinxsin3x+sin5xsin7x\Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x
On rearranging we get,
  [sinxsin3x] + [sin5xsin7x]\Rightarrow \;\left[ {\sin x - \sin 3x} \right]{\text{ }} + {\text{ }}\left[ {\sin 5x - \sin 7x} \right]
Using the formula sinAsinB=2sin(AB2)cos(A+B2)\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)
2sin(x3x2)cos(x+3x2)+2sin(5x7x2)cos(5x+7x2)\Rightarrow 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\cos \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\cos \left( {\dfrac{{5x + 7x}}{2}} \right)
On simplification, we get
2sin(x)cos(2x)+2sin(x)cos(6x)\Rightarrow 2\sin \left( { - x} \right)\cos \left( {2x} \right) + 2\sin \left( { - x} \right)\cos \left( {6x} \right)
Taking sinx-sinx common from both the terms
2sinx(cos2x+cos6x)\Rightarrow - 2\sin x\left( {\cos 2x + \cos 6x} \right)
Using the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
2sinx(2cos(2x+6x2)cos(6x2x2))\Rightarrow - 2\sin x\left( {2\cos \left( {\dfrac{{2x + 6x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right)
On simplification we get,
4sinxcos4xcos2x\Rightarrow - 4\sin x\cos 4x\cos 2x
Now, Taking the denominator of the expression in the left-hand side
(cosxcos3x)(cos5xcos7x)\Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)
Using the formulacosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)

2sin(x3x2)sin(x+3x2)+2sin(5x7x2)sin(5x+7x2) \Rightarrow - 2\sin \left( {\dfrac{{x - 3x}}{2}} \right)\sin \left( {\dfrac{{x + 3x}}{2}} \right) + 2\sin \left( {\dfrac{{5x - 7x}}{2}} \right)\sin \left( {\dfrac{{5x + 7x}}{2}} \right)
On simplification we get,
2sin(x)sin(2x)+2sin(x)sin(6x)\Rightarrow - 2\sin \left( { - x} \right)\sin \left( {2x} \right) + 2\sin \left( { - x} \right)\sin \left( {6x} \right)
Using sin(x)=sinx\sin ( - x) = - \sin x, we get
2sin(x)sin(2x)2sin(x)sin(6x)\Rightarrow 2\sin \left( x \right)\sin \left( {2x} \right) - 2\sin \left( x \right)\sin \left( {6x} \right)
Taking 2sinx2\sin x common from both the terms, we get
2sinx(sin2xsin6x)\Rightarrow 2\sin x\left( {\sin 2x - \sin 6x} \right)
Now using sinAsinB=2sin(AB2)cos(A+B2)\sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right), we get
2sinx(2sin(2x6x2)cos(2x+6x2))\Rightarrow 2\sin x\left( {2\sin \left( {\dfrac{{2x - 6x}}{2}} \right)\cos \left( {\dfrac{{2x + 6x}}{2}} \right)} \right)
On simplification we get,
2sinx(2sin2xcos4x)\Rightarrow 2\sin x\left( { - 2\sin 2x\cos 4x} \right)
4sinxsin2xcos4x\Rightarrow - 4\sin x\sin 2x\cos 4x
Therefore the left-hand expression will be numeratordenominator\dfrac{{numerator}}{{deno\min ator}}
i.e. 4sinxcos4xcos2x4sinxsin2xcos4x\dfrac{{ - 4\sin x\cos 4x\cos 2x}}{{ - 4\sin x\sin 2x\cos 4x}}
Dividing 4sinxcos4x - 4\sin x\cos 4x from the numerator and the denominator, we get
=cos2xsin2x= \dfrac{{\cos 2x}}{{\sin 2x}}
Using cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A, we get
=cot2x= \cot 2x, which equal to the right-hand side expression
Since the left-hand side and right=hand side are equal, the equation has been proved.

Note: We also prove that sinxsin3x+sin5xsin7xcosxcos3xcos5x+cos7x=cot2x\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x, by substituting the value of π6\dfrac{\pi }{6}
Substituting x=π6x = \dfrac{\pi }{6}
Left-hand side=sin(π6)sin(3π6)+sin(5π6)sin(7π6)cos(π6)cos(3π6)cos(5π6)+cos(7π6) = \dfrac{{\sin \left( {\dfrac{\pi }{6}} \right) - \sin \left( {3\dfrac{\pi }{6}} \right) + \sin \left( {5\dfrac{\pi }{6}} \right) - \sin \left( {7\dfrac{\pi }{6}} \right)}}{{\cos \left( {\dfrac{\pi }{6}} \right) - \cos \left( {3\dfrac{\pi }{6}} \right) - \cos \left( {5\dfrac{\pi }{6}} \right) + \cos \left( {7\dfrac{\pi }{6}} \right)}}
=120+12(12)320(32)32= \dfrac{{\dfrac{1}{2} - 0 + \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)}}{{\dfrac{{\sqrt 3 }}{2} - 0 - \left( { - \dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{{\sqrt 3 }}{2}}}
On simplifying
=13= \dfrac{1}{{\sqrt 3 }}
Right-hand side=cot2(π6) = \cot 2\left( {\dfrac{\pi }{6}} \right)
=13= \dfrac{1}{{\sqrt 3 }} , cotπ3=13\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}
Since, Left-hand side==Right-hand side
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verify.