Question
Question: Prove that: \(\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x...
Prove that:
cosx−cos3x−cos5x+cos7xsinx−sin3x+sin5x−sin7x=cot2x
Solution
For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinA−sinB=2sin(2A−B)cos(2A+B)
cosA−cosB=−2sin(2A+B)sin(2A−B)
cosA+cosB=2cos(2A+B)cos(2A−B)
We simplify in such a manner that it results in the equivalent value to the other side expression.
_Complete step-by-step answer: _
Given data: cosx−cos3x−cos5x+cos7xsinx−sin3x+sin5x−sin7x=cot2x
Taking the numerator of the expression in the left-hand side
⇒sinx−sin3x+sin5x−sin7x
On rearranging we get,
⇒[sinx−sin3x] + [sin5x−sin7x]
Using the formula sinA−sinB=2sin(2A−B)cos(2A+B)
⇒2sin(2x−3x)cos(2x+3x)+2sin(25x−7x)cos(25x+7x)
On simplification, we get
⇒2sin(−x)cos(2x)+2sin(−x)cos(6x)
Taking −sinx common from both the terms
⇒−2sinx(cos2x+cos6x)
Using the formula cosA+cosB=2cos(2A+B)cos(2A−B)
⇒−2sinx(2cos(22x+6x)cos(26x−2x))
On simplification we get,
⇒−4sinxcos4xcos2x
Now, Taking the denominator of the expression in the left-hand side
⇒(cosx−cos3x)−(cos5x−cos7x)
Using the formulacosA−cosB=−2sin(2A+B)sin(2A−B)
⇒−2sin(2x−3x)sin(2x+3x)+2sin(25x−7x)sin(25x+7x)
On simplification we get,
⇒−2sin(−x)sin(2x)+2sin(−x)sin(6x)
Using sin(−x)=−sinx, we get
⇒2sin(x)sin(2x)−2sin(x)sin(6x)
Taking 2sinx common from both the terms, we get
⇒2sinx(sin2x−sin6x)
Now using sinA−sinB=2sin(2A−B)cos(2A+B), we get
⇒2sinx(2sin(22x−6x)cos(22x+6x))
On simplification we get,
⇒2sinx(−2sin2xcos4x)
⇒−4sinxsin2xcos4x
Therefore the left-hand expression will be denominatornumerator
i.e. −4sinxsin2xcos4x−4sinxcos4xcos2x
Dividing −4sinxcos4x from the numerator and the denominator, we get
=sin2xcos2x
Using sinAcosA=cotA, we get
=cot2x, which equal to the right-hand side expression
Since the left-hand side and right=hand side are equal, the equation has been proved.
Note: We also prove that cosx−cos3x−cos5x+cos7xsinx−sin3x+sin5x−sin7x=cot2x, by substituting the value of 6π
Substituting x=6π
Left-hand side=cos(6π)−cos(36π)−cos(56π)+cos(76π)sin(6π)−sin(36π)+sin(56π)−sin(76π)
=23−0−(−23)−2321−0+21−(−21)
On simplifying
=31
Right-hand side=cot2(6π)
=31 , cot3π=31
Since, Left-hand side=Right-hand side
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verify.