Solveeit Logo

Question

Question: Prove that: \[\dfrac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}} = \tan 2x\]...

Prove that: sinx+sin2x+sin3xcosx+cos2x+cos3x=tan2x\dfrac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}} = \tan 2x

Explanation

Solution

In order to prove this, we will use the identities sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) by combining the first and the last term in the numerator and denominator respectively. After using these identities, we will be getting simplified terms in the numerator and denominator. We will then cancel out some terms from the numerator and denominator and solve further to prove LHS=RHSLHS = RHS.

Complete step by step answer:
We need to prove sinx+sin2x+sin3xcosx+cos2x+cos3x=tan2x\dfrac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}} = \tan 2x
Let us consider LHSLHS, which is equal to sinx+sin2x+sin3xcosx+cos2x+cos3x\dfrac{{\sin x + \sin 2x + \sin 3x}}{{\cos x + \cos 2x + \cos 3x}}. As we know, addition is commutative, we can re-shuffle the second and third term in the numerator as well as the denominator. On doing this, we get
LHSsinx+sin3x+sin2xcosx+cos3x+cos2xLHS \Rightarrow \dfrac{{\sin x + \sin 3x + \sin 2x}}{{\cos x + \cos 3x + \cos 2x}}
Now, using the identities (sinA+sinB=2sin(A+B2)cos(AB2))\left( {\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right) on first two terms of the numerator and (cosA+cosB=2cos(A+B2)cos(AB2))\left( {\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)} \right) on first two terms of the denominator, we get
LHS2sin(x+3x2)cos(x3x2)+sin2x2cos(x+3x2)cos(x3x2)+cos2xLHS \Rightarrow \dfrac{{2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + \sin 2x}}{{2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + \cos 2x}}

Now, solving the brackets, we get
LHS2sin(4x2)cos(2x2)+sin2x2cos(4x2)cos(2x2)+cos2xLHS \Rightarrow \dfrac{{2\sin \left( {\dfrac{{4x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right) + \sin 2x}}{{2\cos \left( {\dfrac{{4x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right) + \cos 2x}}
On simplifying, we get
LHS2sin(2x)cos(x)+sin2x2cos(2x)cos(x)+cos2xLHS \Rightarrow \dfrac{{2\sin \left( {2x} \right)\cos \left( { - x} \right) + \sin 2x}}{{2\cos \left( {2x} \right)\cos \left( { - x} \right) + \cos 2x}}
Now, as we know cos(θ)=cos(θ)\cos \left( { - \theta } \right) = \cos \left( \theta \right). So, using this, we get
LHS2sin(2x)cos(x)+sin2x2cos(2x)cos(x)+cos2xLHS \Rightarrow \dfrac{{2\sin \left( {2x} \right)\cos \left( x \right) + \sin 2x}}{{2\cos \left( {2x} \right)\cos \left( x \right) + \cos 2x}}

Now, taking out sin2x\sin 2x common from the numerator and cos2x\cos 2x common from the denominator, we get
LHSsin(2x)(2cos(x)+1)cos(2x)(2cos(x)+1)LHS \Rightarrow \dfrac{{\sin \left( {2x} \right)\left( {2\cos \left( x \right) + 1} \right)}}{{\cos \left( {2x} \right)\left( {2\cos \left( x \right) + 1} \right)}}
Now, cancelling out (2cos(x)+1)\left( {2\cos \left( x \right) + 1} \right) from the numerator and denominator, we get
LHSsin(2x)cos(2x)LHS \Rightarrow \dfrac{{\sin \left( {2x} \right)}}{{\cos \left( {2x} \right)}}
Now, using sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta , we get
LHStan2xLHS \Rightarrow \tan 2x
Also, we have RHStan2xRHS \Rightarrow \tan 2x.
Hence, we proved LHS=RHS=tan2xLHS = RHS = \tan 2x

Note: The most important thing we need to remember while solving such types of questions is to analyse which formula is to be applied in order to reach the required form as we can solve trigonometric questions in many ways. Also, we need to be very clear with the formulas as there are just minor differences in the formulae and one wrong term in the formula used will lead to the wrong answer.