Solveeit Logo

Question

Question: Prove that: \(\dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x}=\dfrac{1}...

Prove that:
sinxcos3x+sin3xcos9x+sin9xcos27x=12[tan27xtanx]\dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x}=\dfrac{1}{2}\left[ \tan 27x-\tan x \right]

Explanation

Solution

First of all, multiply and divide the L.H.S of the above equation to 2. And the multiply and divide cosx\cos x with sinxcos3x\dfrac{\sin x}{\cos 3x}, cos3x\cos 3x with sin3xcos9x\dfrac{\sin 3x}{\cos 9x} and cos9x\cos 9x with sin9xcos27x\dfrac{\sin 9x}{\cos 27x}. Then we are going to use the trigonometric property which states that sin2x=2sinxcosx\sin 2x=2\sin x\cos x. Also, we need this trigonometric identity which states that sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B.

Complete step-by-step solution:
The equation we are asked to prove is as follows:
sinxcos3x+sin3xcos9x+sin9xcos27x=12[tan27xtanx]\dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x}=\dfrac{1}{2}\left[ \tan 27x-\tan x \right]
We are going to rearrange the L.H.S of the above equation in such a way so that it will be equal to R.H.S. For that, we are going to multiply and divide 2 to L.H.S of the above equation and we get,
22(sinxcos3x+sin3xcos9x+sin9xcos27x)\dfrac{2}{2}\left( \dfrac{\sin x}{\cos 3x}+\dfrac{\sin 3x}{\cos 9x}+\dfrac{\sin 9x}{\cos 27x} \right)
Now, moving the 2 written in the numerator inside the bracket we get,
12(2sinxcos3x+2sin3xcos9x+2sin9xcos27x)\dfrac{1}{2}\left( \dfrac{2\sin x}{\cos 3x}+\dfrac{2\sin 3x}{\cos 9x}+\dfrac{2\sin 9x}{\cos 27x} \right)
Now, multiplying and dividing cosx\cos x with sinxcos3x\dfrac{\sin x}{\cos 3x}, cos3x\cos 3x with sin3xcos9x\dfrac{\sin 3x}{\cos 9x} and cos9x\cos 9x with sin9xcos27x\dfrac{\sin 9x}{\cos 27x} in the above expression and we get,
12(2sinxcosxcos3xcosx+2sin3xcos3xcos9xcos3x+2sin9xcos9xcos27xcos9x)\dfrac{1}{2}\left( \dfrac{2\sin x\cos x}{\cos 3x\cos x}+\dfrac{2\sin 3x\cos 3x}{\cos 9x\cos 3x}+\dfrac{2\sin 9x\cos 9x}{\cos 27x\cos 9x} \right)
We know the trigonometry double angle property which states that:
sin2x=2sinxcosx\sin 2x=2\sin x\cos x
Using the above relation in the above expression we get,
12(sin2xcos3xcosx+sin6xcos9xcos3x+sin18xcos27xcos9x)\dfrac{1}{2}\left( \dfrac{\sin 2x}{\cos 3x\cos x}+\dfrac{\sin 6x}{\cos 9x\cos 3x}+\dfrac{\sin 18x}{\cos 27x\cos 9x} \right)
We are also going to use the sine identity which states that:
sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
Writing sin2x=sin(3xx),sin6x=sin(9x3x),sin18x=sin(27x9x)\sin 2x=\sin \left( 3x-x \right),\sin 6x=\sin \left( 9x-3x \right),\sin 18x=\sin \left( 27x-9x \right) in the above expression we get,
12(sin(3xx)cos3xcosx+sin(9x3x)cos9xcos3x+sin(27x9x)cos27xcos9x) =12(sin3xcosxcos3xsinxcos3xcosx+sin9xcos3xcos9xsin3xcos9xcos3x+sin27xcos9xcos27xsin9xcos27xcos9x) \begin{aligned} & \dfrac{1}{2}\left( \dfrac{\sin \left( 3x-x \right)}{\cos 3x\cos x}+\dfrac{\sin \left( 9x-3x \right)}{\cos 9x\cos 3x}+\dfrac{\sin \left( 27x-9x \right)}{\cos 27x\cos 9x} \right) \\\ & =\dfrac{1}{2}\left( \dfrac{\sin 3x\cos x-\cos 3x\sin x}{\cos 3x\cos x}+\dfrac{\sin 9x\cos 3x-\cos 9x\sin 3x}{\cos 9x\cos 3x}+\dfrac{\sin 27x\cos 9x-\cos 27x\sin 9x}{\cos 27x\cos 9x} \right) \\\ \end{aligned}
Rearranging the above expression and we get,
=12(tan3xtanx+tan9xtan3x+tan27xtan9x)=\dfrac{1}{2}\left( \tan 3x-\tan x+\tan 9x-\tan 3x+\tan 27x-\tan 9x \right)
Terms with opposite sign get canceled out and we get,
=12(tan27xtanx)=\dfrac{1}{2}\left( \tan 27x-\tan x \right)
As you can see that our L.H.S is coming equal to R.H.S so we have proved the given equation.

Note: To solve the above problem, we must know the following trigonometric identities:
sin2x=2sinxcosx\sin 2x=2\sin x\cos x
sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
You cannot move forward in the above problem if you don’t know the above properties so make sure you have properly understood these concepts.