Solveeit Logo

Question

Question: Prove that \(\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta ...

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta } ,using the identity sec2θ=1+tan2θ{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta

Explanation

Solution

In this problem we have to prove sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta } by using sec2θ=1+tan2θ{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta . In the given equations we will consider LHS and convert it in terms of secθ\sec \theta , tanθ\tan \theta by taking cosθ\cos \theta common from both numerator and denominator applying the know formulas secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } ,tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } . now the LHS part is converted in terms of secθ\sec \theta , tanθ\tan \theta . In the problem they have suggested to use the identity sec2θ=1+tan2θ{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta ,from this identity we will find the value of secθ+tanθ\sec \theta +\tan \theta by using the know algebraic formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) . now we can use the aloe of secθ+tanθ\sec \theta +\tan \theta in the LHS part which is in terms of secθ\sec \theta , tanθ\tan \theta and simplify the LHS part by doing L.C.M then we will get the required solution.

FORMULAS USED:
1. secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }
2. tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }
3. a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)

Complete step by step solution:
Given that
sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta }
Considering the LHS part
LHS =sinθcosθ+1sinθ+cosθ1=\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}
Now taking common cosθ\cos \theta from both numerator and denominator, then we will get
LHS=cosθ(sinθcosθcosθcosθ+1cosθ)cosθ(sinθcosθ+cosθcosθ1cosθ)LHS=\dfrac{\cos \theta \left( \dfrac{\sin \theta }{\cos \theta }-\dfrac{\cos \theta }{\cos \theta }+\dfrac{1}{\cos \theta } \right)}{\cos \theta \left( \dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\cos \theta }-\dfrac{1}{\cos \theta } \right)}
Now using the known formulas secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta },tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }, then we will get
LHS=cosθ(tanθ1+secθ)cosθ(tanθ1+secθ) LHS=tanθ+secθ11(secθtanθ) \begin{aligned} & LHS=\dfrac{\cos \theta (\tan \theta -1+\sec \theta )}{\cos \theta (\tan \theta -1+\sec \theta )} \\\ & \Rightarrow LHS=\dfrac{\tan \theta +\sec \theta -1}{1-\left( \sec \theta -\tan \theta \right)} \\\ \end{aligned}
Now the LHS parts are completely converted in terms of secθ\sec \theta , tanθ\tan \theta .
We have the identity,
sec2θ=1+tan2θ sec2θtan2θ=1 \begin{aligned} & {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta \\\ & {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 \\\ \end{aligned}
Using the formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) in the above equation, then we will get
(secθ+tanθ)(secθtanθ)=1\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1
From the above equation the value of secθ+tanθ\sec \theta +\tan \theta can be written as
secθ+tanθ=1secθtanθ\sec \theta +\tan \theta =\dfrac{1}{\sec \theta -\tan \theta }
Now substituting above value in the LHS part, then we will get
LHS=secθ+tanθ11(secθtanθ) LHS=1secθtanθ11(secθtanθ) \begin{aligned} & LHS=\dfrac{\sec \theta +\tan \theta -1}{1-\left( \sec \theta -\tan \theta \right)} \\\ & \Rightarrow LHS=\dfrac{\dfrac{1}{\sec \theta -\tan \theta }-1}{1-\left( \sec \theta -\tan \theta \right)} \\\ \end{aligned}
Simplify the above part by taking L.C.M in numerator
LHS=1(secθtanθ)(secθtanθ)(1(secθtanθ)) LHS=1(secθtanθ) LHS=RHS \begin{aligned} & LHS=\dfrac{1-(\sec \theta -\tan \theta )}{\left( \sec \theta -\tan \theta \right)\left( 1-\left( \sec \theta -\tan \theta \right) \right)} \\\ & \Rightarrow LHS=\dfrac{1}{\left( \sec \theta -\tan \theta \right)} \\\ & \therefore LHS=RHS \\\ \end{aligned}
Hence proved.

Note: We have some other trigonometric identity’s that will help us in solving this type of numerical. They are
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
cot2θcsc2θ=1{{\cot }^{2}}\theta -{{\csc }^{2}}\theta =1