Solveeit Logo

Question

Question: Prove that \(\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta ...

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta } .

Explanation

Solution

Hint: Try to simplify the left-hand side of the equation that we need to prove by using the formula sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 , and other similar formula

Complete step-by-step answer:
We will now solve the left-hand side of the equation given in the question.
sinθcosθ+1sinθ+cosθ1\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}
Now we will take cosθ\cos \theta common from both the numerator and denominator of the expression. On doing so, we get
=sinθcosθ1+1cosθsinθcosθ+11cosθ=\dfrac{\dfrac{\sin \theta }{\cos \theta }-1+\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }+1-\dfrac{1}{\cos \theta }}
We know that sinxcosx=tanx and 1cosx=secx\dfrac{\sin x}{\cos x}=\tan x\text{ and }\dfrac{1}{\cos x}=\sec x . Therefore, our expression becomes:
=tanθ1+secθtanθ+1secθ=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +1-\sec \theta }
Now we know sec2xtan2x=1{{\sec }^{2}}x-{{\tan }^{2}}x=1 .
=tanθ1+secθtanθ+sec2θtan2θsecθ=\dfrac{\tan \theta -1+\sec \theta }{\tan \theta +{{\sec }^{2}}\theta -{{\tan }^{2}}\theta -\sec \theta }
Now, if we use the formula: a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) , we get
=tanθ1+secθsec2θtan2θ(secθtanθ)=\dfrac{\tan \theta -1+\sec \theta }{{{\sec }^{2}}\theta -{{\tan }^{2}}\theta -\left( \sec \theta -\tan \theta \right)}
=tanθ1+secθ(secθ+tanθ)(secθtanθ)(secθtanθ)=\dfrac{\tan \theta -1+\sec \theta }{\left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)-\left( \sec \theta -\tan \theta \right)}
=tanθ1+secθ(secθ+tanθ1)(secθtanθ)=\dfrac{\tan \theta -1+\sec \theta }{\left( \sec \theta +\tan \theta -1 \right)\left( \sec \theta -\tan \theta \right)}
=1secθtanθ=\dfrac{1}{\sec \theta -\tan \theta }
As we have shown that the left-hand side of the equation given in the question is equal to the right-hand side of the equation in the question. Hence, we can say that we have proved that sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{\sin \theta -\cos \theta +1}{\sin \theta +\cos \theta -1}=\dfrac{1}{\sec \theta -\tan \theta } .

Note: Be careful about the calculation and the signs while opening the brackets. The general mistake that a student can make is 1+x-(x-1)=1+x-x-1. Also, we need to remember the properties related to complementary angles and trigonometric ratios.