Solveeit Logo

Question

Question: Prove that \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\...

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }} using the identity sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta .

Explanation

Solution

We use the value of trigonometric functions like tangent and secant in terms of sine and cosine to prove the LHS of the equation equal to RHS of the equation. Divide both numerator and denominator by cosθ\cos \theta to convert the equation in form of tangent and secant. Multiply the fraction with a fraction that has a numerator and denominator as the same, so we can make use of the given identity.

  • Value of tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
  • Value of secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}

Complete step-by-step answer:
We have to prove sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}
We solve the left hand side of the equation
LHS of the equation is sinθcosθ+1sinθ+cosθ1\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}}
Divide both numerator and denominator bycosθ\cos \theta .
sinθcosθ+1sinθ+cosθ1=sinθcosθ+1cosθsinθ+cosθ1cosθ\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}}}{{\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}}}
Separate the division in fraction
sinθcosθ+1sinθ+cosθ1=sinθcosθcosθcosθ+1cosθsinθcosθ+cosθcosθ1cosθ\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} - \dfrac{1}{{\cos \theta }}}}
Since we know the value oftanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}and value of secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
Substitute the values in numerator and denominator.
sinθcosθ+1sinθ+cosθ1=tanθ1+secθtanθ+1secθ\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }}
Now multiply both numerator and denominator by same factor i.e. (tanθsecθ)(\tan \theta - \sec \theta )
sinθcosθ+1sinθ+cosθ1=tanθ1+secθtanθ+1secθ×(tanθsecθ)(tanθsecθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }} \times \dfrac{{(\tan \theta - \sec \theta )}}{{(\tan \theta - \sec \theta )}}
Multiply the values in numerator onlysinθcosθ+1sinθ+cosθ1=tan2θtanθ+secθtanθsecθtanθ+secθsec2θ(tanθ+1secθ)(tanθsecθ) \Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta \tan \theta - \sec \theta \tan \theta + \sec \theta - {{\sec }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}
Cancel the terms having same magnitude but opposite signs
sinθcosθ+1sinθ+cosθ1=tan2θtanθ+secθsec2θ(tanθ+1secθ)(tanθsecθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta - {{\sec }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}
Substitute the value of sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta
sinθcosθ+1sinθ+cosθ1=tan2θtanθ+secθ1tan2θ(tanθ+1secθ)(tanθsecθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{{{\tan }^2}\theta - \tan \theta + \sec \theta - 1 - {{\tan }^2}\theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}
Cancel the terms having same magnitude but opposite signs
sinθcosθ+1sinθ+cosθ1=1tanθ+secθ(tanθ+1secθ)(tanθsecθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1 - \tan \theta + \sec \theta }}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}
Take negative sign common from numerator
sinθcosθ+1sinθ+cosθ1=(tanθ+1secθ)(tanθ+1secθ)(tanθsecθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - (\tan \theta + 1 - \sec \theta )}}{{(\tan \theta + 1 - \sec \theta )(\tan \theta - \sec \theta )}}
Cancel the same factors from numerator and denominator.
sinθcosθ+1sinθ+cosθ1=1(tanθsecθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1}}{{(\tan \theta - \sec \theta )}}
Multiply both numerator and denominator by -1
sinθcosθ+1sinθ+cosθ1=1(tanθsecθ)×11\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{{ - 1}}{{(\tan \theta - \sec \theta )}} \times \dfrac{{ - 1}}{{ - 1}}
Since we know the multiplication of two negative signs gives a positive sign
sinθcosθ+1sinθ+cosθ1=1(tanθ+secθ)\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{( - \tan \theta + \sec \theta )}}
sinθcosθ+1sinθ+cosθ1=1secθtanθ\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}
RHS of the equation is 1secθtanθ\dfrac{1}{{\sec \theta - \tan \theta }}
\therefore LHS ==RHS
Hence proved

Note: Students might make the mistake of proving this question by rationalizing the process. Keep in mind we rationalize the fraction where we have to find the smallest possible value of the function, if we rationalize the LHS we will have to rationalize the RHS as well. Here we take the hint of which value to be multiplied in numerator and denominator by looking at the RHS.
cosecθ=1sinθ\cos ec \theta = \dfrac{1}{{\sin \theta }}
tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}