Question
Question: Prove that \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\...
Prove that sinθ+cosθ−1sinθ−cosθ+1=secθ−tanθ1 using the identity sec2θ=1+tan2θ.
Solution
We use the value of trigonometric functions like tangent and secant in terms of sine and cosine to prove the LHS of the equation equal to RHS of the equation. Divide both numerator and denominator by cosθ to convert the equation in form of tangent and secant. Multiply the fraction with a fraction that has a numerator and denominator as the same, so we can make use of the given identity.
- Value of tanθ=cosθsinθ
- Value of secθ=cosθ1
Complete step-by-step answer:
We have to prove sinθ+cosθ−1sinθ−cosθ+1=secθ−tanθ1
We solve the left hand side of the equation
LHS of the equation is sinθ+cosθ−1sinθ−cosθ+1
Divide both numerator and denominator bycosθ.
⇒sinθ+cosθ−1sinθ−cosθ+1=cosθsinθ+cosθ−1cosθsinθ−cosθ+1
Separate the division in fraction
⇒sinθ+cosθ−1sinθ−cosθ+1=cosθsinθ+cosθcosθ−cosθ1cosθsinθ−cosθcosθ+cosθ1
Since we know the value oftanθ=cosθsinθand value of secθ=cosθ1
Substitute the values in numerator and denominator.
⇒sinθ+cosθ−1sinθ−cosθ+1=tanθ+1−secθtanθ−1+secθ
Now multiply both numerator and denominator by same factor i.e. (tanθ−secθ)
⇒sinθ+cosθ−1sinθ−cosθ+1=tanθ+1−secθtanθ−1+secθ×(tanθ−secθ)(tanθ−secθ)
Multiply the values in numerator only⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ+1−secθ)(tanθ−secθ)tan2θ−tanθ+secθtanθ−secθtanθ+secθ−sec2θ
Cancel the terms having same magnitude but opposite signs
⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ+1−secθ)(tanθ−secθ)tan2θ−tanθ+secθ−sec2θ
Substitute the value of sec2θ=1+tan2θ
⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ+1−secθ)(tanθ−secθ)tan2θ−tanθ+secθ−1−tan2θ
Cancel the terms having same magnitude but opposite signs
⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ+1−secθ)(tanθ−secθ)−1−tanθ+secθ
Take negative sign common from numerator
⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ+1−secθ)(tanθ−secθ)−(tanθ+1−secθ)
Cancel the same factors from numerator and denominator.
⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ−secθ)−1
Multiply both numerator and denominator by -1
⇒sinθ+cosθ−1sinθ−cosθ+1=(tanθ−secθ)−1×−1−1
Since we know the multiplication of two negative signs gives a positive sign
⇒sinθ+cosθ−1sinθ−cosθ+1=(−tanθ+secθ)1
⇒sinθ+cosθ−1sinθ−cosθ+1=secθ−tanθ1
RHS of the equation is secθ−tanθ1
∴LHS =RHS
Hence proved
Note: Students might make the mistake of proving this question by rationalizing the process. Keep in mind we rationalize the fraction where we have to find the smallest possible value of the function, if we rationalize the LHS we will have to rationalize the RHS as well. Here we take the hint of which value to be multiplied in numerator and denominator by looking at the RHS.
cosecθ=sinθ1
tanθ=cotθ1