Solveeit Logo

Question

Question: Prove that \( \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{...

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} using sec2θ=1+tan2θse{c^2}\theta = 1 + {\tan ^2}\theta

Explanation

Solution

Hint : On the left hand side of the given equation, we have sine and cosine; on the right hand side, we have tangent and secant. So divide the numerator and denominator of the left hand side of the equation by cosθ\cos \theta . We will get a result in terms of tangent and secant as tangent is the ratio of sine and cosine; secant is the inverse of cosine. Using sec2θ=1+tan2θse{c^2}\theta = 1 + {\tan ^2}\theta , prove the given equation.

Complete step-by-step answer :
We are given to prove sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }} .
And sec2θ=1+tan2θse{c^2}\theta = 1 + {\tan ^2}\theta
Sending tan2θ{\tan ^2}\theta from the right hand side to left hand side, we get
sec2θtan2θ=1se{c^2}\theta - {\tan ^2}\theta = 1 …….. equation (1)
Considering secθsec\theta as ‘a’ and tanθ\tan \theta as ‘b’, the above equation becomes a2b2=1{a^2} - {b^2} = 1
We already know that a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
Therefore, sec2θtan2θ=(secθ+tanθ)(secθtanθ)se{c^2}\theta - {\tan ^2}\theta = \left( {sec\theta + \tan \theta } \right)\left( {sec\theta - \tan \theta } \right) …… equation (2)
The given equation to prove is sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{sec\theta - \tan \theta }}
Considering the LHS
sinθcosθ+1sinθ+cosθ1\Rightarrow \dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}}
We are now dividing the numerator and denominator of the above trigonometric expression by cosθ\cos \theta
(sinθcosθ+1cosθ)(sinθ+cosθ1cosθ)\Rightarrow \dfrac{{\left( {\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}} \right)}}{{\left( {\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}} \right)}}
(sinθcosθcosθcosθ+1cosθ)(sinθcosθ+cosθcosθ1cosθ)\Rightarrow \dfrac{{\left( {\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}} \right)}}{{\left( {\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\cos \theta }} - \dfrac{1}{{\cos \theta }}} \right)}}
We know that the ratio of sine and cosine gives tan and the inverse of cosine is secant.
This gives,
tanθ1+secθtanθ+1secθ\Rightarrow \dfrac{{\tan \theta - 1 + sec\theta }}{{\tan \theta + 1 - sec\theta }}
Writing tangent and secant terms together
tanθ+secθ1tanθsecθ+1\Rightarrow \dfrac{{\tan \theta + sec\theta - 1}}{{\tan \theta - sec\theta + 1}}
Now we are multiplying the numerator and denominator by tanθsecθ\tan \theta - sec\theta
(tanθ+secθ1)(tanθsecθ)(tanθsecθ+1)(tanθsecθ)\Rightarrow \dfrac{{\left( {\tan \theta + sec\theta - 1} \right)\left( {\tan \theta - sec\theta } \right)}}{{\left( {\tan \theta - sec\theta + 1} \right)\left( {\tan \theta - sec\theta } \right)}}
(tanθ+secθ)(tanθsecθ)(tanθsecθ)(tanθsecθ)(tanθsecθ)+(tanθsecθ)\Rightarrow \dfrac{{\left( {\tan \theta + sec\theta } \right)\left( {\tan \theta - sec\theta } \right) - \left( {\tan \theta - sec\theta } \right)}}{{\left( {\tan \theta - sec\theta } \right)\left( {\tan \theta - sec\theta } \right) + \left( {\tan \theta - sec\theta } \right)}}
(tan2θsec2θ)(tanθsecθ)(tanθsecθ)2+(tanθsecθ)\Rightarrow \dfrac{{\left( {{{\tan }^2}\theta - se{c^2}\theta } \right) - \left( {\tan \theta - sec\theta } \right)}}{{{{\left( {\tan \theta - sec\theta } \right)}^2} + \left( {\tan \theta - sec\theta } \right)}} ( since from equation 2)
We know from equation 1 that sec2θtan2θ=1se{c^2}\theta - {\tan ^2}\theta = 1 , this means tan2θsec2θ=1{\tan ^2}\theta - se{c^2}\theta = - 1
1(tanθsecθ)(tanθsecθ)2+(tanθsecθ)\Rightarrow \dfrac{{ - 1 - \left( {\tan \theta - sec\theta } \right)}}{{{{\left( {\tan \theta - sec\theta } \right)}^2} + \left( {\tan \theta - sec\theta } \right)}}
[1+(tanθsecθ)](tanθsecθ)(1+(tanθsecθ))\Rightarrow \dfrac{{ - \left[ {1 + \left( {\tan \theta - sec\theta } \right)} \right]}}{{\left( {\tan \theta - sec\theta } \right)\left( {1 + \left( {\tan \theta - sec\theta } \right)} \right)}}
Cancelling 1+(tanθsecθ)1 + \left( {\tan \theta - sec\theta } \right) in the numerator and denominator, we get
1(tanθsecθ)\Rightarrow \dfrac{{ - 1}}{{\left( {\tan \theta - sec\theta } \right)}}
On multiplying the numerator and denominator by -1, we get
1(secθtanθ)\Rightarrow \dfrac{1}{{\left( {sec\theta - \tan \theta } \right)}}
Therefore, the value of sinθcosθ+1sinθ+cosθ1\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} is 1secθtanθ\dfrac{1}{{sec\theta - \tan \theta }} .
Hence, proved.

Note : Here we have considered the LHS of the equation and proved it that it is equal to the RHS. We can also prove it by first considering the RHS and finding its solution. sec2θtan2θ=1se{c^2}\theta - {\tan ^2}\theta = 1 is one of the Pythagorean identities. sin2θ+cos2θ=1,cosec2θcot2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1,\cos e{c^2}\theta - co{t^2}\theta = 1 are the other two Pythagorean identities.