Solveeit Logo

Question

Question: Prove that \[\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\...

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} = \dfrac{1}{{\sec \theta - \tan \theta }}

Explanation

Solution

Hint: Here R. H. S indicates a term which includes secθ\sec \theta so, we divide the numerator and denominator of L. H. S by cosθ\cos \theta .

Dividing numerator and denominator by cosθ\cos \theta makes the L. H. S term easy. As secθ\sec \theta is reciprocal of cosθ\cos \theta so we are dividing L .H .S by cosθ\cos \theta .
\RightarrowL. H. S = sinθcosθ+1sinθ+cosθ1÷cosθcosθ\dfrac{{\sin \theta - \cos \theta + 1}}{{\sin \theta + \cos \theta - 1}} \div \dfrac{{\cos \theta }}{{\cos \theta }}

\RightarrowL. H. S =sinθcosθ+1cosθsinθ+cosθ1cosθ\dfrac{{\dfrac{{\sin \theta - \cos \theta + 1}}{{\cos \theta }}}}{{\dfrac{{\sin \theta + \cos \theta - 1}}{{\cos \theta }}}} ……. (1)
Now, by using trigonometric identities we will simplify the L. H. S term.
We know that
sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta , cosθcosθ=1\dfrac{{\cos \theta }}{{\cos \theta }} = 1, 1cosθ=secθ\dfrac{1}{{\cos \theta }} = \sec \theta
Now, putting these values in equation (1), we get
\RightarrowL. H. S = tanθ1+secθtanθ+1secθ\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta + 1 - \sec \theta }} ……. (2)
Now, using the identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1, equation (2) becomes simple. We replace the value of 1 only in the denominator to get the desired result.
Replacing value of 1 in denominator, we get
\RightarrowL. H. S =tanθ1+secθtanθsecθ+(sec2θtan2θ)\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta - \sec \theta + ({{\sec }^2}\theta - {{\tan }^2}\theta )}}
We know that (a2b2)=(ab)(a+b)({a^2} - {b^2}) = (a - b)(a + b), using this property L. H. S can be written as,
\RightarrowL. H. S =tanθ1+secθtanθsecθ+(secθtanθ)(secθ+tanθ)\dfrac{{\tan \theta - 1 + \sec \theta }}{{\tan \theta - \sec \theta + (\sec \theta - \tan \theta )(\sec \theta + \tan \theta )}}
Taking (secθtanθ)(\sec \theta - \tan \theta ) common from denominator,
\RightarrowL. H. S =tanθ1+secθ(secθtanθ)(1+secθ+tanθ)\dfrac{{\tan \theta - 1 + \sec \theta }}{{(\sec \theta - \tan \theta )( - 1 + \sec \theta + \tan \theta )}}
Now, eliminating the same terms from the numerator and the denominator, we get
\RightarrowL. H. S =1secθtanθ\dfrac{1}{{\sec \theta - \tan \theta }}= R. H. S
Hence proved.

Note: To solve such problems one should have the knowledge of trigonometric identities like sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 , sec2θtan2θ=1se{c^2}\theta - {\tan ^2}\theta = 1 and cosec2θcot2θ=1\cos e{c^2}\theta - {\cot ^2}\theta = 1 which are very useful in solving the problems. Another key point is that we have to see the R. H. S of the question to decide which identity we can use to solve the problem.