Solveeit Logo

Question

Question: Prove that \[\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta \]....

Prove that sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta .

Explanation

Solution

Here, we need to prove the given expression. We will use trigonometric ratios and trigonometric identities to simplify one of the sides of the equation, such that it is equal to the other side of the equation, and hence, prove the given equation.

Formula Used:
We will use the following formulas:
The sum of squares of the sine and cosine of an angle xx is equal to 1, that is sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1.
The product of sum and difference of two numbers is given by the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.
The cotangent of an angle xx is the ratio of the cosine and sine of the angle xx, that is cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}.
The cosecant of an angle xx is the reciprocal of the sine of the angle xx, that is cosecx=1sinx{\rm{cosec }}x = \dfrac{1}{{\sin x}}.

Complete step-by-step answer:
We will first simplify the left hand side of the equation.
Multiplying and dividing the left hand side of the equation sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta by 1+cosθ1 + \cos \theta , we get
L.H.S.=sinθ1cosθ×(1+cosθ1+cosθ)\Rightarrow L.H.S. = \dfrac{{\sin \theta }}{{1 - \cos \theta }} \times \left( {\dfrac{{1 + \cos \theta }}{{1 + \cos \theta }}} \right)
Simplifying the expression, we get
L.H.S.=sinθ(1+cosθ)(1cosθ)(1+cosθ)\Rightarrow L.H.S. = \dfrac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}}
The product of sum and difference of two numbers is given by the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.
Using the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} to simplify the denominator of the equation, we get
L.H.S.=sinθ(1+cosθ)12(cosθ)2 L.H.S.=sinθ(1+cosθ)1cos2θ\begin{array}{l} \Rightarrow L.H.S. = \dfrac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{1^2} - {{\left( {\cos \theta } \right)}^2}}}\\\ \Rightarrow L.H.S. = \dfrac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }}\end{array}
We know that the sum of squares of the sine and cosine of an angle is equal to 1, that is sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.
Subtracting cos2θ{\cos ^2}\theta from both sides of the trigonometric identity, we get
sin2θ=1cos2θ\Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta
Substituting 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta in the equation L.H.S.=sinθ(1+cosθ)1cos2θL.H.S. = \dfrac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }}, we get
L.H.S.=sinθ(1+cosθ)sin2θ\Rightarrow L.H.S. = \dfrac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }}
Simplifying the expression, we get
L.H.S.=1+cosθsinθ\Rightarrow L.H.S. = \dfrac{{1 + \cos \theta }}{{\sin \theta }}
Splitting the sum using the L.C.M., we get
L.H.S.=1sinθ+cosθsinθ\Rightarrow L.H.S. = \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}
Now, the cotangent of an angle xx is the ratio of the cosine and sine of the angle xx, that is cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}.
Thus, we get
cotθ=cosθsinθ\Rightarrow \cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
The cosecant of an angle xx is the reciprocal of the sine of the angle xx, that is cosecx=1sinx{\rm{cosec }}x = \dfrac{1}{{\sin x}}.
Thus, we get
cosecθ=1sinθ\Rightarrow {\rm{cosec}}\theta = \dfrac{1}{{\sin \theta }}
Substituting 1sinθ=cosecθ\dfrac{1}{{\sin \theta }} = {\rm{cosec}}\theta and cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta in the equation L.H.S.=1sinθ+cosθsinθL.H.S. = \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}, we get
L.H.S.=cosecθ+cotθ\Rightarrow L.H.S. = {\rm{cosec}}\theta + \cot \theta
We can observe that cosecθ+cotθ{\rm{cosec}}\theta + \cot \theta is the right hand side of the given equation sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta .
Thus, we get
L.H.S.=R.H.S.\Rightarrow L.H.S. = R.H.S.
Hence, we have proved that sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta .

Note: We can also solve the problem by simplifying the right hand side of the equation.
The right hand side of the equation sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta is cosecθ+cotθ{\rm{cosec}}\theta + \cot \theta .
Thus, we get
R.H.S.=cosecθ+cotθ\Rightarrow R.H.S. = {\rm{cosec}}\theta + \cot \theta
The cotangent of an angle xx is the ratio of the cosine and sine of the angle xx, that is cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}.
Thus, we get
cotθ=cosθsinθ\Rightarrow \cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
The cosecant of an angle xx is the reciprocal of the sine of the angle xx, that is cosecx=1sinx{\rm{cosec }}x = \dfrac{1}{{\sin x}}.
Thus, we get
cosecθ=1sinθ\Rightarrow {\rm{cosec}}\theta = \dfrac{1}{{\sin \theta }}
Substituting 1sinθ=cosecθ\dfrac{1}{{\sin \theta }} = {\rm{cosec}}\theta and cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta in the equation R.H.S.=cosecθ+cotθR.H.S. = {\rm{cosec}}\theta + \cot \theta , we get
R.H.S.=1sinθ+cosθsinθ\Rightarrow R.H.S. = \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}
Adding the terms, we get
R.H.S.=1+cosθsinθ\Rightarrow R.H.S. = \dfrac{{1 + \cos \theta }}{{\sin \theta }}
Multiplying and dividing the equation by 1cosθ1 - \cos \theta , we get
R.H.S.=1+cosθsinθ×(1cosθ1cosθ) R.H.S.=(1+cosθ)(1cosθ)sinθ(1cosθ)\begin{array}{l} \Rightarrow R.H.S. = \dfrac{{1 + \cos \theta }}{{\sin \theta }} \times \left( {\dfrac{{1 - \cos \theta }}{{1 - \cos \theta }}} \right)\\\ \Rightarrow R.H.S. = \dfrac{{\left( {1 + \cos \theta } \right)\left( {1 - \cos \theta } \right)}}{{\sin \theta \left( {1 - \cos \theta } \right)}}\end{array}
The product of sum and difference of two numbers is given by the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.
Using the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} to simplify the numerator of the equation, we get
R.H.S.=12(cosθ)2sinθ(1cosθ) R.H.S.=1cos2θsinθ(1cosθ)\begin{array}{l} \Rightarrow R.H.S. = \dfrac{{{1^2} - {{\left( {\cos \theta } \right)}^2}}}{{\sin \theta \left( {1 - \cos \theta } \right)}}\\\ \Rightarrow R.H.S. = \dfrac{{1 - {{\cos }^2}\theta }}{{\sin \theta \left( {1 - \cos \theta } \right)}}\end{array}
We know that the sum of squares of the sine and cosine of an angle is equal to 1, that is sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.
Subtracting cos2θ{\cos ^2}\theta from both sides of the trigonometric identity, we get
sin2θ=1cos2θ\Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta
Substituting 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta in the equation R.H.S.=1cos2θsinθ(1cosθ)R.H.S. = \dfrac{{1 - {{\cos }^2}\theta }}{{\sin \theta \left( {1 - \cos \theta } \right)}}, we get
R.H.S.=sin2θsinθ(1cosθ)\Rightarrow R.H.S. = \dfrac{{{{\sin }^2}\theta }}{{\sin \theta \left( {1 - \cos \theta } \right)}}
Simplifying the expression, we get
R.H.S.=sinθ1cosθ\Rightarrow R.H.S. = \dfrac{{\sin \theta }}{{1 - \cos \theta }}
We can observe that sinθ1cosθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} is the left hand side of the given equation sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta .
Thus, we get
R.H.S.=L.H.S.\Rightarrow R.H.S. = L.H.S.
Hence, we have proved that sinθ1cosθ=cosecθ+cotθ\dfrac{{\sin \theta }}{{1 - \cos \theta }} = {\rm{cosec}}\theta + \cot \theta .