Solveeit Logo

Question

Question: Prove that: \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A\]...

Prove that:
sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A=tan4A\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A

Explanation

Solution

To solve the given trigonometric question, we should know some of the trigonometric properties, these are given below, sinC+sinD=2sin(C+D2)sin(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right). We should also know the similar property for cosines, cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right). We should also know that cos(x)=cosx\cos (-x)=\cos x. Using these properties, we will prove the given statement.

Complete step by step answer:
First, we need to simplify the expression, sinA+sin3A+sin5A+sin7A\sin A+\sin 3A+\sin 5A+\sin 7A and cosA+cos3A+cos5A+cos7A\cos A+\cos 3A+\cos 5A+\cos 7A. Let’s take the first expression sinA+sin3A+sin5A+sin7A\sin A+\sin 3A+\sin 5A+\sin 7A. Rearranging the terms, it can be written as sinA+sin7A+sin3A+sin5A\sin A+\sin 7A+\sin 3A+\sin 5A. Using the trigonometric property sinC+sinD=2sin(C+D2)sin(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right) on the first two and next two terms of the above expression separately, we get
2sin(A+7A2)cos(A7A2)+2sin(3A+5A2)cos(3A5A2)\Rightarrow 2\sin \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\sin \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)
Simplifying the above expression, we get
2sin4A(cos(3A)+cos(A))\Rightarrow 2\sin 4A\left( \cos (-3A)+\cos (-A) \right)
Using the property cos(x)=cosx\cos (-x)=\cos x on the above expression, we get
2sin4A(cos3A+cosA)\Rightarrow 2\sin 4A\left( \cos 3A+\cos A \right)
Now the second expression, we need to simplify is cosA+cos3A+cos5A+cos7A\cos A+\cos 3A+\cos 5A+\cos 7A. Rearranging the terms, it can be written as cosA+cos7A+cos3A+cos5A\cos A+\cos 7A+\cos 3A+\cos 5A. Using the property cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) on the first two and next two terms of the above expression, we get
2cos(A+7A2)cos(A7A2)+2cos(3A+5A2)cos(3A5A2)\Rightarrow 2\cos \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\cos \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)
Simplifying the above expression, we get
2cos4A(cos(3A)+cos(A))\Rightarrow 2\cos 4A\left( \cos (-3A)+\cos (-A) \right)
Using the property cos(x)=cosx\cos (-x)=\cos x on the above expression, we get
2cos4A(cos3A+cosA)\Rightarrow 2\cos 4A\left( \cos 3A+\cos A \right)
We are asked to prove the statement sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A=tan4A\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A. The LHS of the statement is sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}, and the RHS of the statement is tan4A\tan 4A.
Let’s simplify the LHS, the numerator of the LHS is sinA+sin3A+sin5A+sin7A\sin A+\sin 3A+\sin 5A+\sin 7A, and the denominator of the LHS is cosA+cos3A+cos5A+cos7A\cos A+\cos 3A+\cos 5A+\cos 7A. We have already simplified these expressions above, using the simplified forms of these expressions, the LHS can be expressed as
2sin4A(cos3A+cosA)2cos4A(cos3A+cosA)\Rightarrow \dfrac{2\sin 4A\left( \cos 3A+\cos A \right)}{2\cos 4A\left( \cos 3A+\cos A \right)}
Canceling out the common factors from the numerator and denominator, we get

& \Rightarrow \dfrac{\sin 4A}{\cos 4A} \\\ & \Rightarrow \tan 4A=RHS \\\ \end{aligned}$$ $$\therefore LHS=RHS$$ Hence, proved. **Note:** To solve these types of questions, one should remember the trigonometric properties. The properties, we used to solve this problem are $$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$$ and $$\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$$. If the LHS has an expression in fraction form then simplifying the numerator and denominator separately is easier to solve.