Solveeit Logo

Question

Question: Prove that: \(\dfrac{\sin A-2{{\sin }^{3}}A}{2{{\cos }^{3}}A-\cos A}=\tan A\)....

Prove that: sinA2sin3A2cos3AcosA=tanA\dfrac{\sin A-2{{\sin }^{3}}A}{2{{\cos }^{3}}A-\cos A}=\tan A.

Explanation

Solution

Hint: In order to solve this question, we will express 2sin3A=(sinA2sin2A)2{{\sin }^{3}}A=\left( \sin A2{{\sin }^{2}}A \right) and 2cos3A=(cosA2cos2A)2{{\cos }^{3}}A=\left( \cos A2{{\cos }^{2}}A \right) and we will make use of the formula, sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. We will first write (sinA2sin2A)\left( \sin A2{{\sin }^{2}}A \right) in place of 2sin3A2{{\sin }^{3}}A and (cosA2cos2A)\left( \cos A2{{\cos }^{2}}A \right) in place of 2cos3A2{{\cos }^{3}}A and then we will solve the question further in order to prove the expression.

Complete step by step solution:
It is given in the question that we have to prove sinA2sin3A2cos3AcosA=tanA\dfrac{\sin A-2{{\sin }^{3}}A}{2{{\cos }^{3}}A-\cos A}=\tan A. We will start from the LHS first, so we can write the LHS as,
sinA2sin3A2cos3AcosA\dfrac{\sin A-2{{\sin }^{3}}A}{2{{\cos }^{3}}A-\cos A}
We know that 2sin3A2{{\sin }^{3}}A can also be written as (sinA2sin2A)\left( \sin A2{{\sin }^{2}}A \right) and 2cos3A2{{\cos }^{3}}A can be written as (cosA2cos2A)\left( \cos A2{{\cos }^{2}}A \right). So, on replacing 2sin3A2{{\sin }^{3}}A by (sinA2sin2A)\left( \sin A2{{\sin }^{2}}A \right) and 2cos3A2{{\cos }^{3}}A by (cosA2cos2A)\left( \cos A2{{\cos }^{2}}A \right) in the above expression, we will get,
sinAsinA2sin2AcosA2cos2AcosA\dfrac{\sin A-\sin A2{{\sin }^{2}}A}{\cos A2{{\cos }^{2}}A-\cos A}
On taking sin A common from the numerator, we get,
sinA(12sin2A)2cos3AcosA\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{2{{\cos }^{3}}A-\cos A}
Now, on taking cos A common from the denominator, we get,
sinA(12sin2A)cosA(2cos2A1)\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{\cos A\left( 2{{\cos }^{2}}A-1 \right)}
Now, we know that sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. So on replacing 1 by sin2A+cos2A{{\sin }^{2}}A+{{\cos }^{2}}A, we get,
sinA(sin2A+cos2A2sin2A)cosA(2cos2Asin2Acos2A)\dfrac{\sin A\left( {{\sin }^{2}}A+{{\cos }^{2}}A-2{{\sin }^{2}}A \right)}{\cos A\left( 2{{\cos }^{2}}A-{{\sin }^{2}}A-{{\cos }^{2}}A \right)}
sinA(cos2Asin2A)cosA(cos2Asin2A)\dfrac{\sin A\left( {{\cos }^{2}}A-{{\sin }^{2}}A \right)}{\cos A\left( {{\cos }^{2}}A-{{\sin }^{2}}A \right)}
Now, on cancelling the like terms in the numerator and the denominator, we get,
sinAcosA\dfrac{\sin A}{\cos A}
Now, we know that sinAcosA\dfrac{\sin A}{\cos A} is equal to tan A. Therefore, we get the LHS as,
LHS = tan A
We have the RHS as tan A. So, we can say,
LHS = RHS
Hence proved.

Note: The possible mistake that the students can make in this question is in the step where we have to substitute sin2A+cos2A{{\sin }^{2}}A+{{\cos }^{2}}A in place of 1 in the expression sinA(12sin2A)cosA(2cos2A1)\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{\cos A\left( 2{{\cos }^{2}}A-1 \right)}. Most of the students, after substituting the value get the expression as, sinA(sin2A+cos2A2sin2A)cosA(2cos2Asin2A+cos2A)\dfrac{\sin A\left( {{\sin }^{2}}A+{{\cos }^{2}}A-2{{\sin }^{2}}A \right)}{\cos A\left( 2{{\cos }^{2}}A-{{\sin }^{2}}A+{{\cos }^{2}}A \right)} but this is wrong, as in the denominator of sinA(12sin2A)cosA(2cos2A1)\dfrac{\sin A\left( 1-2{{\sin }^{2}}A \right)}{\cos A\left( 2{{\cos }^{2}}A-1 \right)} there is a negative sign before 1, hence when we substitute sin2A+cos2A{{\sin }^{2}}A+{{\cos }^{2}}A, the negative sign must be applied to it also, and we should get,
sinA(sin2A+cos2A2sin2A)cosA(2cos2Asin2Acos2A)\dfrac{\sin A\left( {{\sin }^{2}}A+{{\cos }^{2}}A-2{{\sin }^{2}}A \right)}{\cos A\left( 2{{\cos }^{2}}A-{{\sin }^{2}}A-{{\cos }^{2}}A \right)}. So, the students must be careful while solving this question.