Solveeit Logo

Question

Question: Prove that: \(\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x ...

Prove that:
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x

Explanation

Solution

For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
We simplify in such a manner that it results in the equivalent value to the other side expression

Complete step by step Answer:

Given data:(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x
Taking the expression in the left-hand side
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)\Rightarrow \dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}}
Using the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) in the numerator
2sin(7x+5x2)cos(7x5x2)+2sin(9x+3x2)cos(9x3x2)(cos7x+cos5x)+(cos9x+cos3x)\Rightarrow \dfrac{{2\sin \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\sin \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}}
And now using the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)in the denominator
2sin(7x+5x2)cos(7x5x2)+2sin(9x+3x2)cos(9x3x2)2cos(7x+5x2)cos(7x5x2)+2cos(9x+3x2)cos(9x3x2)\Rightarrow \dfrac{{2\sin \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\sin \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}{{2\cos \left( {\dfrac{{7x + 5x}}{2}} \right)\cos \left( {\dfrac{{7x - 5x}}{2}} \right) + 2\cos \left( {\dfrac{{9x + 3x}}{2}} \right)\cos \left( {\dfrac{{9x - 3x}}{2}} \right)}}
On simplification we get,
2sin(6x)cos(x)+2sin(6x)cos(3x)2cos(6x)cos(x)+2cos(6x)cos(3x)\Rightarrow \dfrac{{2\sin \left( {6x} \right)\cos \left( x \right) + 2\sin \left( {6x} \right)\cos \left( {3x} \right)}}{{2\cos \left( {6x} \right)\cos \left( x \right) + 2\cos \left( {6x} \right)\cos \left( {3x} \right)}}
Taking 2sin(6x)2sin\left( {6x} \right) common from the numerator, we get,
2sin(6x)[cos(x)+cos(3x)]2cos(6x)cos(x)+2cos(6x)cos(3x)\Rightarrow \dfrac{{2\sin \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}{{2\cos \left( {6x} \right)\cos \left( x \right) + 2\cos \left( {6x} \right)\cos \left( {3x} \right)}}
Now, taking 2cos(6x)2cos\left( {6x} \right) common from the denominator, we get,
2sin(6x)[cos(x)+cos(3x)]2cos(6x)[cos(x)+cos(3x)]\Rightarrow \dfrac{{2\sin \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}{{2\cos \left( {6x} \right)[\cos \left( x \right) + \cos \left( {3x} \right)]}}
Dividing both numerator and the denominator by 2[cos(x)+cos(3x)]2[\cos \left( x \right) + \cos \left( {3x} \right)], we get,
sin(6x)cos(6x)\Rightarrow \dfrac{{\sin \left( {6x} \right)}}{{\cos \left( {6x} \right)}}
Now using the formula sin(A)cos(A)=tanA\dfrac{{\sin \left( A \right)}}{{\cos \left( A \right)}} = \tan A
tan6x \Rightarrow \tan 6x, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation

Note: We also prove that (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}} = \tan 6x, by substituting the value of x
Substituting x=0x = 0
Left-hand side=(sin0+sin0)+(sin0+sin0)(cos0+cos0)+(cos0+cos0) = \dfrac{{(\sin 0 + \sin 0) + (\sin 0 + \sin 0)}}{{(\cos 0 + \cos 0) + (\cos 0 + \cos 0)}}
=0= 0, since sin0=0\sin 0 = 0
right-hand side=tan6(0) = \tan 6(0)
=0= 0 , tan0=0\tan 0 = 0
Since, Left-hand side=right-hand side=0 = 0
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verification.