Question
Question: Prove that: \(\dfrac{{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}}{{(\cos 7x + \cos 5x) + (\cos 9x ...
Prove that:
(cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)=tan6x
Solution
For a question like this we approach the solution by simplifying anyone the side and proving it equal to the other side, here also we will simplify the left-hand side using some of the trigonometric formulas like
sinA+sinB=2sin(2A+B)cos(2A−B)
cosA+cosB=2cos(2A+B)cos(2A−B)
We simplify in such a manner that it results in the equivalent value to the other side expression
Complete step by step Answer:
Given data:(cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)=tan6x
Taking the expression in the left-hand side
⇒(cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)
Using the formula sinA+sinB=2sin(2A+B)cos(2A−B) in the numerator
⇒(cos7x+cos5x)+(cos9x+cos3x)2sin(27x+5x)cos(27x−5x)+2sin(29x+3x)cos(29x−3x)
And now using the formula cosA+cosB=2cos(2A+B)cos(2A−B)in the denominator
⇒2cos(27x+5x)cos(27x−5x)+2cos(29x+3x)cos(29x−3x)2sin(27x+5x)cos(27x−5x)+2sin(29x+3x)cos(29x−3x)
On simplification we get,
⇒2cos(6x)cos(x)+2cos(6x)cos(3x)2sin(6x)cos(x)+2sin(6x)cos(3x)
Taking 2sin(6x) common from the numerator, we get,
⇒2cos(6x)cos(x)+2cos(6x)cos(3x)2sin(6x)[cos(x)+cos(3x)]
Now, taking 2cos(6x) common from the denominator, we get,
⇒2cos(6x)[cos(x)+cos(3x)]2sin(6x)[cos(x)+cos(3x)]
Dividing both numerator and the denominator by 2[cos(x)+cos(3x)], we get,
⇒cos(6x)sin(6x)
Now using the formula cos(A)sin(A)=tanA
⇒tan6x, which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: We also prove that (cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)=tan6x, by substituting the value of x
Substituting x=0
Left-hand side=(cos0+cos0)+(cos0+cos0)(sin0+sin0)+(sin0+sin0)
=0, since sin0=0
right-hand side=tan6(0)
=0 , tan0=0
Since, Left-hand side=right-hand side=0
We have proved the given equation, but do not attempt this type of solution for the descriptive type question, this substitution method is just a way to check or verification.