Solveeit Logo

Question

Question: Prove that \(\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\tan 4x\)...

Prove that
sin5x+sin3xcos5x+cos3x=tan4x\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\tan 4x

Explanation

Solution

Hint: Use the fact that sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right)+\cos \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right). Hence prove that sin5x+sin3x=2sin4xcosx\sin 5x+\sin 3x=2\sin 4x\cos x and cos5x+cos3x=2cos4xcosx\cos 5x+\cos 3x=2\cos 4x\cos x and hence prove the above identity.
Complete step-by-step answer:
Simplifying the Numerator:
We have
Numerator = sin5x+sin3x
We know that sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
Put A = 5x and B = 3x, we get
sin5x+sin3x=2sin(5x+3x2)cos(5x3x2)=2sin4xcosx\sin 5x+\sin 3x=2\sin \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right)=2\sin 4x\cos x
Hence, we have Numerator = 2sin4xcosx
Simplifying the Denominator:
We have
Denominator = cos5x+cos3x
We know that cos(A)+cos(B)=2cosA+B2cosAB2\cos \left( A \right)+\cos \left( B \right)=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}
Put A = 5x and B = 3x, we get
cos5x+cos3x=2cos(5x+3x2)cos(5x3x2)=2cos4xcosx\cos 5x+\cos 3x=2\cos \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right)=2\cos 4x\cos x
Hence, we have Denominator = 2cos4xcosx
Hence, we have
sin5x+sin3xcos5x+cos3x=2sin4xcosx2cos4xcosx=sin4xcos4x\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\dfrac{2\sin 4x\cos x}{2\cos 4x\cos x}=\dfrac{\sin 4x}{\cos 4x}
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x
Hence, we have
sin4xcos4x=tan4x\dfrac{\sin 4x}{\cos 4x}=\tan 4x
Hence, we have
sin5x+sin3xcos5x+cos3x=tan4x\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\tan 4x
Hence, we have L.H.S. = R.H.S.
Q.E.D
Note: Aid to memory:
[i] S+S = 2SC
[ii] S-S = 2CS
[iii] C+C = 2CC
[iv] C-C = -2SS
Each one of the above parts helps to memorise two formula
Like from [ii], we have S-S = 2CS.
Hence, we have sin(A)sin(B)=2cos(A+B2)sin(AB2)\sin \left( A \right)-\sin \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) and 2cosxsiny=sin(x+y)sin(xy)2\cos x\sin y=\sin \left( x+y \right)-\sin \left( x-y \right)
Hence by memorising the above mnemonic, we can memorise 8 different formulae.