Solveeit Logo

Question

Question: Prove that \(\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x\) ....

Prove that sin5x2sin3x+sinxcos5xcosx=tanx\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x .

Explanation

Solution

Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas of sinC+sinD\sin C+\sin D , cosCcosD\cos C-\cos D and cos2θ\cos 2\theta for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Complete step-by-step answer:
Given:
We have to prove the following equation:
sin5x2sin3x+sinxcos5xcosx=tanx\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
sinC+sinD=2sin(C+D2)cos(CD2)..................(1) cosCcosD=2sin(C+D2)sin(CD2)...............(2) cos2θ=12sin2θ......................................................(3) sin2θ=2sinθcosθ.....................................................(4) sinθcosθ=tanθ................................................................(5) \begin{aligned} & \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)..................\left( 1 \right) \\\ & \cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...............\left( 2 \right) \\\ & \cos 2\theta =1-2{{\sin }^{2}}\theta ......................................................\left( 3 \right) \\\ & \sin 2\theta =2\sin \theta \cos \theta .....................................................\left( 4 \right) \\\ & \dfrac{\sin \theta }{\cos \theta }=\tan \theta ................................................................\left( 5 \right) \\\ \end{aligned}
Now, we will use the above five formulas to simplify the term on the left-hand side.
On the left-hand side we have sin5x2sin3x+sinxcos5xcosx\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x} . Then,
sin5x2sin3x+sinxcos5xcosx sin5x+sinx2sin3xcos5xcosx \begin{aligned} & \dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x} \\\ & \Rightarrow \dfrac{\sin 5x+\sin x-2\sin 3x}{\cos 5x-\cos x} \\\ \end{aligned}
Now, we will use the formula from the equation (1) to write sin5x+sinx=2sin3xcos2x\sin 5x+\sin x=2\sin 3x\cos 2x and formula from the equation (2) to write cos5xcosx=2sin3xsin2x\cos 5x-\cos x=-2\sin 3x\sin 2x in the above expression. Then,
sin5x+sinx2sin3xcos5xcosx 2sin(5x+x2)cos(5xx2)2sin3x2sin(5x+x2)sin(5xx2) 2sin3xcos2x2sin3x2sin3xsin2x \begin{aligned} & \dfrac{\sin 5x+\sin x-2\sin 3x}{\cos 5x-\cos x} \\\ & \Rightarrow \dfrac{2\sin \left( \dfrac{5x+x}{2} \right)\cos \left( \dfrac{5x-x}{2} \right)-2\sin 3x}{-2\sin \left( \dfrac{5x+x}{2} \right)\sin \left( \dfrac{5x-x}{2} \right)} \\\ & \Rightarrow \dfrac{2\sin 3x\cos 2x-2\sin 3x}{-2\sin 3x\sin 2x} \\\ \end{aligned}
Now, we can take 2sin3x-2\sin 3x common from each term in the numerator of the above expression. Then,
2sin3xcos2x2sin3x2sin3xsin2x 2sin3x(1cos2x)2sin3xsin2x 1cos2xsin2x \begin{aligned} & \dfrac{2\sin 3x\cos 2x-2\sin 3x}{-2\sin 3x\sin 2x} \\\ & \Rightarrow \dfrac{-2\sin 3x\left( 1-\cos 2x \right)}{-2\sin 3x\sin 2x} \\\ & \Rightarrow \dfrac{1-\cos 2x}{\sin 2x} \\\ \end{aligned}
Now, we will use the formula from the equation (3) to write 1cos2x=2sin2x1-\cos 2x=2{{\sin }^{2}}x and sin2x=2sinxcosx\sin 2x=2\sin x\cos x in the above expression. Then,
1cos2xsin2x 2sin2x2sinxcosx sinxcosx \begin{aligned} & \dfrac{1-\cos 2x}{\sin 2x} \\\ & \Rightarrow \dfrac{2{{\sin }^{2}}x}{2\sin x\cos x} \\\ & \Rightarrow \dfrac{\sin x}{\cos x} \\\ \end{aligned}
Now, we will use the formula from the equation (5) to write sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x in the above expression. Then,
sinxcosx tanx \begin{aligned} & \dfrac{\sin x}{\cos x} \\\ & \Rightarrow \tan x \\\ \end{aligned}
Now, from the above result we conclude that the value of the expression sin5x2sin3x+sinxcos5xcosx\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x} will be equal to the value of the expression tanx\tan x . Then,
sin5x2sin3x+sinxcos5xcosx=tanx\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x
Now, from the above result we conclude that, the term on the left-hand side is equal to the term on the right-hand side.
Thus, sin5x2sin3x+sinxcos5xcosx=tanx\dfrac{\sin 5x-2\sin 3x+\sin x}{\cos 5x-\cos x}=\tan x .
Hence, proved.

Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas like cosCcosD=2sin(C+D2)sin(CD2)\cos C-\cos D=-2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right) correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.