Solveeit Logo

Question

Question: Prove that \[\dfrac{{\sin 5x - 2\sin 3x + \sin x}}{{\cos 5x - \cos x}} = \tan x\]...

Prove that sin5x2sin3x+sinxcos5xcosx=tanx\dfrac{{\sin 5x - 2\sin 3x + \sin x}}{{\cos 5x - \cos x}} = \tan x

Explanation

Solution

In the given function, trigonometric formulas are to be used. Cubic solving it so, for that let us discuss.
Trigonometric functions: - Trigonometric functions are the real functions cubic ratio an angle of right angled triangle to rations of two side lengths.

Complete step by step solution:
Basic trigonometric function:
There are six basic trigonometric functions sine, cosine, tangent, cotangent, Secant and Cosecant. These are related to each other.
For solving the giving question, taking L.H.S. of it.
sin5x+sinx2sin3xcos5xcosx\dfrac{{\sin 5x + \sin x - 2\sin 3x}}{{\cos 5x - \cos x}}
For solving the L.H.S. of the given function, applied trigonometric formulas on it.
The given L.H.S. is
(sin5x+sinx)2sin3xcos5xcosx\dfrac{{(\sin 5x + \sin x) - 2\sin 3x}}{{\cos 5x - \cos x}} -------(A)
Firstly solve the numerator of the above equation (A)
(sin5x+sinx)(\sin 5x + \sin x) is considered as Numerator
Now, sinx+siny=2sinx+y2.cosxy2\sin x + \sin y = 2\sin \dfrac{{x + y}}{2}.\cos \dfrac{{x - y}}{2} is the identical term. Apply it on the numerator it will become….
Putting sin5x+sinx=2sin(5x+x2).cos(5xx2)\sin 5x + \sin x = 2\sin \left( {\dfrac{{5x + x}}{2}} \right).\cos \left( {\dfrac{{5x - x}}{2}} \right)
sin5x+sinx=2sin(6x2).cos(4x2)\sin 5x + \sin x = 2\sin \left( {\dfrac{{6x}}{2}} \right).\cos \left( {\dfrac{{4x}}{2}} \right)
Solving the above term by dividing 22 we get
sin5x+sinx=2sin3xcos2x\sin 5x + \sin x = 2\sin 3x\cos 2x --------(B)
Solve the Denominator of the equation (A)
cos5x+cosx\cos 5x + \cos x is the denominator
So,
The identical term is
cosxcosy=2sinx+y2.sinxy2\cos x - \cos y = 2\sin \dfrac{{x + y}}{2}.\sin \dfrac{{x - y}}{2}
According to the given function
cos5xcosx\cos 5x - \cos x, put x=5xx = 5xand y=xy = x in identical term we get
cos5xcosx=2sin(5x+x2).sin(5xx2)\cos 5x - \cos x = 2\sin \left( {\dfrac{{5x + x}}{2}} \right).\sin \left( {\dfrac{{5x - x}}{2}} \right)
By adding 5x+x5x + x, get 6x6x
By Subtracting 5xx5x - x, get 4x4x so,
the term becomes…
cos5xcosx=2sin(6x2).sin(4x2)\cos 5x - \cos x = 2\sin \left( {\dfrac{{6x}}{2}} \right).\sin \left( {\dfrac{{4x}}{2}} \right)
Solving the above term
6x2\dfrac{{6x}}{2} will solve to get 3x3x
4x2\dfrac{{4x}}{2} will solve to get 2x2x
cos5xcosx=2sin.3x.sin2x\cos 5x - \cos x = - 2\sin .3x.\sin 2x ………………….(C)
Substituting the value of (B) and (C) i.e. the values of numerator and denominator equation (A)
L.H.S. becomes
2sin3x.cos2x=2sin3x2sin3xsin2x2\sin 3x.\cos 2x = 2\sin 3x - 2\sin 3x\sin 2x
taking 2sin3x2\sin 3x common from the numerator of about term
=2sin3x(cos2x1)2sin3xsin2x= \dfrac{{2\sin 3x\left( {\cos 2x - 1} \right)}}{{ - 2\sin 3x \sin 2x}}
The term 2sin3x2\sin 3x should be cancelled from
=(cos2x1)sin2x= \dfrac{{\left( {\cos 2x - 1} \right)}}{{ - \sin 2x}}
Now, taking 1 - 1 common from the numerator.
=(cos2x1)sin2x= \dfrac{{\left( {\cos 2x - 1} \right)}}{{\sin 2x}}
The ()( - ) minus sign should be cancelled. So the term becomes
=1cos2xsin2x= \dfrac{{1 - \cos 2x}}{{\sin 2x}} -----------(D)
As identical term of 1cos2x1 - \cos 2x is 2sin2x2{\sin ^2}x it will comes from cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}xadjusting the turns while taking
2sin2x- 2{\sin ^2}x to L.H.S.
cos2x+sin2x=1\cos 2x + {\sin ^2}x = 1
2sin2x=2cosx.sinx2{\sin ^2}x = 2\cos x.\sin x
The identical term sin2x\sin 2x will be 2cosx.sinx2\cos x.\sin x
Substituting the values of both identical terms in equation (D), We get
=1(12sin2x)2cosx.sinx= \dfrac{{1 - \left( {1 - 2{{\sin }^2}x} \right)}}{{2\cos x.\sin x}}
Solving the above term removes the brackets adjusting the sign.
=11+2sin2x2cosx.sinx= \dfrac{{1 - 1 + 2{{\sin }^2}x}}{{2\cos x.\sin x}}
As positive 11 and negative (1)( - 1) becomes zero so,
=0+2sin2x2cosx.sinx= \dfrac{{0 + 2{{\sin }^2}x}}{{2\cos x.\sin x}}
=2sin2x2cosx.sinx= \dfrac{{2{{\sin }^2}x}}{{2\cos x.\sin x}}
Now, cancelled the term 2sinx2\sin x from both the numerator and denominator we get -
=sinxcosx= \dfrac{{\sin x}}{{\cos x}}
as sinxcosx\dfrac{{\sin x}}{{\cos x}} be the identical term of tan x so,
=sinxcosx= \dfrac{{\sin x}}{{\cos x}}
=tanx= \tan x
=R.H.S.= R.H.S.
Hence the result it proved L.H.S. = R.H.S.

Note:
The above question is solved by using trigonometric functions and formulae. The trigonometric functions are widely used in all science that are related to Geometry. Such as navigations, solid mechanics.