Solveeit Logo

Question

Question: Prove that \(\dfrac{\sin 3x+\sin x}{\cos 3x+\cos x}=\tan 2x\)...

Prove that
sin3x+sinxcos3x+cosx=tan2x\dfrac{\sin 3x+\sin x}{\cos 3x+\cos x}=\tan 2x

Explanation

Solution

Hint: Use the fact that sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and cos(A)+cos(B)=2cos(A+B2)cos(AB2)\cos \left( A \right)+\cos \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right). Hence prove that sin3x+sinx=2sin2xcosx\sin 3x+\sin x=2\sin 2x\cos x and cos3x+cosx=2cos2xcosx\cos 3x+\cos x=2\cos 2x\cos x and hence prove the above identity.
Complete step-by-step answer:
Simplifying the Numerator:
We have
Numerator = sin3x+sinx
We know that sin(A)+sin(B)=2sin(A+B2)cos(AB2)\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
Put A = 3x and B = x, we get
sin3x+sinx=2sin(3x+x2)cos(3xx2)=2sin2xcosx\sin 3x+\sin x=2\sin \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right)=2\sin 2x\cos x
Hence, we have Numerator = 2sin2xcosx
Simplifying the Denominator:
We have
Denominator = cos3x+cosx
We know that cos(A)+cos(B)=2cosA+B2cosAB2\cos \left( A \right)+\cos \left( B \right)=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}
Put A = 3x and B = x, we get
cos3x+cosx=2cos(3x+x2)cos(3xx2)=2cos2xcosx\cos 3x+\cos x=2\cos \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right)=2\cos 2x\cos x
Hence, we have Denominator = 2cos4xcosx
Hence, we have
sin3x+sinxcos3x+cosx=2sin2xcosx2cos2xcosx=sin2xcos2x\dfrac{\sin 3x+\sin x}{\cos 3x+\cos x}=\dfrac{2\sin 2x\cos x}{2\cos 2x\cos x}=\dfrac{\sin 2x}{\cos 2x}
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x
Hence, we have
sin2xcos2x=tan2x\dfrac{\sin 2x}{\cos 2x}=\tan 2x
Hence, we have
sin3x+sinxcos3x+cosx=tan2x\dfrac{\sin 3x+\sin x}{\cos 3x+\cos x}=\tan 2x
Hence, we have L.H.S. = R.H.S.
Q.E.D
Note: Aid to memory:
[i] S+S = 2SC
[ii] S-S = 2CS
[iii] C+C = 2CC
[iv] C-C = -2SS
Each one of the above parts helps to memorise two formula
Like from [ii], we have S-S = 2CS.
Hence, we have sin(A)sin(B)=2cos(A+B2)sin(AB2)\sin \left( A \right)-\sin \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) and 2cosxsiny=sin(x+y)sin(xy)2\cos x\sin y=\sin \left( x+y \right)-\sin \left( x-y \right)
Hence by memorising the above mnemonic, we can memorise 8 different formulae.