Solveeit Logo

Question

Question: Prove that \[\dfrac{\sin 16\theta }{\sin \theta }=16\cos \theta \cdot \cos 2\theta \cdot \cos 4\thet...

Prove that sin16θsinθ=16cosθcos2θcos4θ.cos8θ\dfrac{\sin 16\theta }{\sin \theta }=16\cos \theta \cdot \cos 2\theta \cdot \cos 4\theta .\cos 8\theta ?

Explanation

Solution

In the given question, we have been asked to prove the LHS of a given expression is equal to the RHS of the given expression. In order to solve the question, first we start by taking the LHS and simplify the expression in a way we can use the trigonometric identitysin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . Then again we simplify the solved expression further in a way by using the identity. Solve and simplify the expression further until we get the expression that is equal to the RHS.

Complete step by step answer:
We have given that,
sin16θsinθ=16cosθcos2θcos4θ.cos8θ\dfrac{\sin 16\theta }{\sin \theta }=16\cos \theta \cdot \cos 2\theta \cdot \cos 4\theta .\cos 8\theta
Taking the LHS,
We have,
sin16θsinθ\Rightarrow \dfrac{\sin 16\theta }{\sin \theta }
Rewrite the above expression as;
sin2(8θ)sinθ\Rightarrow \dfrac{\sin 2\left( 8\theta \right)}{\sin \theta }
Using the trigonometric identity i.e. sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Here,
We have θ\theta = 8θ8\theta
Thus,
Applying the identity, we have
2sin8θcos8θsinθ\Rightarrow \dfrac{2\sin 8\theta \cos 8\theta }{\sin \theta }
Rewrite the above expression as;
2sin2(4θ)cos8θsinθ\Rightarrow \dfrac{2\sin 2\left( 4\theta \right)\cos 8\theta }{\sin \theta }
Using the trigonometric identity i.e. sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Here,
We have θ\theta = 4θ4\theta
Thus,
Applying the identity, we have
2(2sin4θcos4θ)cos8θsinθ\Rightarrow \dfrac{2\left( 2\sin 4\theta \cos 4\theta \right)\cos 8\theta }{\sin \theta }
Rewrite the above expression as;
4(sin2(2θ))cos4θcos8θsinθ\Rightarrow \dfrac{4\left( \sin 2\left( 2\theta \right) \right)\cdot \cos 4\theta \cdot \cos 8\theta }{\sin \theta }
Using the trigonometric identity i.e. sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Here,
We have θ\theta = 2θ2\theta
Thus,
Applying the identity, we have
4(2sin2θcos2θ)cos4θcos8θsinθ\Rightarrow \dfrac{4\left( 2\sin 2\theta \cos 2\theta \right)\cdot \cos 4\theta \cdot \cos 8\theta }{\sin \theta }
Rewrite the above expression as;
8(sin2θ)cos2θcos4θcos8θsinθ\Rightarrow \dfrac{8\left( \sin 2\theta \right)\cos 2\theta \cdot \cos 4\theta \cdot \cos 8\theta }{\sin \theta }
Using the trigonometric identity i.e. sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Thus,
Applying the identity, we have
8(2sinθcosθ)cos2θcos4θcos8θsinθ\Rightarrow \dfrac{8\left( 2\sin \theta \cos \theta \right)\cos 2\theta \cdot \cos 4\theta \cdot \cos 8\theta }{\sin \theta }
Simplifying the above, we get
16sinθcosθcos2θcos4θcos8θsinθ\Rightarrow \dfrac{16\sin \theta \cdot \cos \theta \cos 2\theta \cdot \cos 4\theta \cdot \cos 8\theta }{\sin \theta }
Cancelling out the common terms, we get
16cosθcos2θcos4θcos8θ=RHS\Rightarrow 16\cos \theta \cdot \cos 2\theta \cdot \cos 4\theta \cdot \cos 8\theta =RHS
Therefore,
sin16θsinθ=16cosθcos2θcos4θ.cos8θ\Rightarrow \dfrac{\sin 16\theta }{\sin \theta }=16\cos \theta \cdot \cos 2\theta \cdot \cos 4\theta .\cos 8\theta
Hence proved.

Note: In order to solve these types of questions, you should always need to remember the properties of trigonometric and the trigonometric identities as well. It will make questions easier to solve. It is preferred that while solving these types of questions we should carefully examine the pattern of the given function and then you would apply the formulas according to the pattern observed. As if you directly apply the formula it will create confusion ahead and we will get the wrong answer.