Question
Question: Prove that \[\dfrac{{\sec 8A - 1}}{{\sec 4A - 1}} = \dfrac{{\tan 8A}}{{\tan 2A}}\]...
Prove that sec4A−1sec8A−1=tan2Atan8A
Solution
Use conversion of secant function into cosine function. Use the trigonometric identity cos2x=1−2sin2x to open the values required in the numerator and denominator. Combine the terms to form suitable pairs using the identity 2sinxcosx=sin2x in the end.
- secx=cosx1
- cos2x=1−2sin2x
- tanx=cosxsinx
Complete step-by-step solution:
We have to prove sec4A−1sec8A−1=tan2Atan8A
We solve the left hand side of the equation
Since LHS is sec4A−1sec8A−1, we transform secant functions to cosine functions using secx=cosx1
⇒sec4A−1sec8A−1=cos4A1−1cos8A1−1
Take LCM in both numerator and denominator of RHS of the equation
⇒sec4A−1sec8A−1=cos4A1−cos4Acos8A1−cos8A
Write the right hand side of the equation in simpler form
⇒sec4A−1sec8A−1=cos8A(1−cos8A)×(1−cos4A)cos4A,,,,,,,,,,,,,,,,,,,,,,, … (1)
Now we calculate the values of cos8Aandcos4Ausing the identity cos2x=1−2sin2x
Since, cos2x=1−2sin2x
⇒cos4A=cos2(2A)=1−2sin2(2A) …………………...… (2)
Similarly,
⇒cos8A=cos2(4A)=1−2sin2(4A)..................… (3)
Substitute the values from equations (2) and (3) in brackets of equation (1)
⇒sec4A−1sec8A−1=cos8A(1−(1−2sin2(4A)))×(1−(1−2sin2(2A)))cos4A
Calculate the value inside the brackets in both numerator and denominator
⇒sec4A−1sec8A−1=cos8A(1−1+2sin2(4A))×(1−1+2sin2(2A))cos4A
Cancel same terms having opposite signs inside the bracket
⇒sec4A−1sec8A−1=cos8A(2sin2(4A))×(2sin2(2A))cos4A
Write numerator and denominators after multiplication
⇒sec4A−1sec8A−1=(2sin2(2A))cos8A(2sin2(4A))cos4A.....................… (4)
We can write (2sin2(4A))cos4A=(2sin4Acos4A)sin4A
Use the identity2sinxcosx=sin2x to write(2sin4Acos4A)=sin2(4A)=sin8A
⇒(2sin2(4A))cos4A=sin8Asin4A
Equation (4) becomes
⇒sec4A−1sec8A−1=(2sin2(2A))cos8Asin8Asin4A
Since cosxsinx=tanx⇒cos8Asin8A=tan8A
⇒sec4A−1sec8A−1=(2sin2(2A))tan8Asin4A................… (5)
Now we can write sin4A=2sin2Acos2A using the identity 2sinxcosx=sin2x
⇒sec4A−1sec8A−1=2sin2Asin2Atan8A2sin2Acos2A
Cancel same factors from numerator and denominator in right hand side of the equation
⇒sec4A−1sec8A−1=sin2Atan8Acos2A
Write cos2Asin2A=tan2A
⇒sec4A−1sec8A−1=tan2Atan8A
This is equal to the right hand side of the given equation.
∴LHS =RHS
Hence Proved
Note: Students are likely to make mistake of substituting all the values of cos4A and cos8A in both numerator and denominator, keep in mind the right hand side of the equation has angles of tangent as 8A and 2A, so don’t change all the trigonometric terms in the equation, only change the part that seems that it can be reduced to smaller form.