Solveeit Logo

Question

Question: Prove that: \(\dfrac{{\operatorname{sinA} - 2si{n^3}A}}{{2{{\cos }^3}A - \cos A}} = \tan A\)....

Prove that: sinA2sin3A2cos3AcosA=tanA\dfrac{{\operatorname{sinA} - 2si{n^3}A}}{{2{{\cos }^3}A - \cos A}} = \tan A.

Explanation

Solution

Take the left side of the given equation and try to work with it. Start with taking a common numerator and denominator and use sinAcosA=tanA\dfrac{{\sin A}}{{\cos A}} = \tan A. Now use sin2A+cos2A=1sin2A=1cos2A{\sin ^2}A + {\cos ^2}A = 1 \Rightarrow {\sin ^2}A = 1 - {\cos ^2}A on the fraction part. Simplify it further to make it equal to the right side of the given equation.

Complete step-by-step answer:
Before moving towards the problem, we should understand the trigonometric ratios better.
Let us take a right-angled triangle with base B, perpendicular P and hypotenuse H.

We know by the definition:
sinA=PerpendicularHypotenuse=PHsin2A=P2H2\sin A = \dfrac{{Perpendicular}}{{{\text{Hypotenuse}}}} = \dfrac{P}{H} \Rightarrow {\sin ^2}A = \dfrac{{{P^2}}}{{{H^2}}}
cosA=BaseHypotenuse=BHcos2A=B2H2\cos A = \dfrac{{Base}}{{{\text{Hypotenuse}}}} = \dfrac{B}{H} \Rightarrow {\cos ^2}A = \dfrac{{{B^2}}}{{{H^2}}}
tanA=PerpendicularBase=PBtan2A=P2B2\tan A = \dfrac{{Perpendicular}}{{Base}} = \dfrac{P}{B} \Rightarrow {\tan ^2}A = \dfrac{{{P^2}}}{{{B^2}}}
According to Pythagoras’ theorem, this says that the square on the hypotenuse of a right-angled triangle is equal in area to the sum of the squares on the other two sides, i.e. H2=P2+B2{H^2} = {P^2} + {B^2}
So, we can say: sin2A+cos2A=P2H2+B2H2=P2+B2H2=H2H2=1{\sin ^2}A + {\cos ^2}A = \dfrac{{{P^2}}}{{{H^2}}} + \dfrac{{{B^2}}}{{{H^2}}} = \dfrac{{{P^2} + {B^2}}}{{{H^2}}} = \dfrac{{{H^2}}}{{{H^2}}} = 1
And also sin2Acos2A=P2H2B2H2=P2B2=tan2A\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}} = \dfrac{{\dfrac{{{P^2}}}{{{H^2}}}}}{{\dfrac{{{B^2}}}{{{H^2}}}}} = \dfrac{{{P^2}}}{{{B^2}}} = {\tan ^2}A
Let’s take the left-hand side of the given equation and try to simplify using trigonometric identities.
Firstly, we can take common sinA\sin A in the numerator and cosA\cos A in the denominator. This will give us:
sinA2sin3A2cos3AcosA=sinA(12sin2A)cosA(2cos2A1)\Rightarrow \dfrac{{\sin A - 2si{n^3}A}}{{2{{\cos }^3}A - \cos A}} = \dfrac{{\sin A\left( {1 - 2{{\sin }^2}A} \right)}}{{\cos A\left( {2{{\cos }^2}A - 1} \right)}}
Now, as we know that the ratio of sine and cosine is tangent, i.e.sinAcosA=tanA\dfrac{{\sin A}}{{\cos A}} = \tan A
sinA(12sin2A)cosA(2cos2A1)=tanA×(12sin2A)(2cos2A1)\Rightarrow \dfrac{{\sin A\left( {1 - 2{{\sin }^2}A} \right)}}{{\cos A\left( {2{{\cos }^2}A - 1} \right)}} = \tan A \times \dfrac{{\left( {1 - 2{{\sin }^2}A} \right)}}{{\left( {2{{\cos }^2}A - 1} \right)}}
Also, we have trigonometric identities: sin2A+cos2A=1sin2A=1cos2A{\sin ^2}A + {\cos ^2}A = 1 \Rightarrow {\sin ^2}A = 1 - {\cos ^2}A. So, we can substitute this value of sin2A{\sin ^2}A in the above relation as:
tanA×(12sin2A)(2cos2A1)=tanA×(12(1cos2A))(2cos2A1)\Rightarrow \tan A \times \dfrac{{\left( {1 - 2{{\sin }^2}A} \right)}}{{\left( {2{{\cos }^2}A - 1} \right)}} = \tan A \times \dfrac{{\left( {1 - 2\left( {1 - {{\cos }^2}A} \right)} \right)}}{{\left( {2{{\cos }^2}A - 1} \right)}}
This can be easily simplified by opening up the inner brackets, so we can rewrite it as:
tanA×(12(1cos2A))(2cos2A1)=tanA×(12+2cos2A)(2cos2A1)=tanA×(2cos2A1)(2cos2A1)\Rightarrow \tan A \times \dfrac{{\left( {1 - 2\left( {1 - {{\cos }^2}A} \right)} \right)}}{{\left( {2{{\cos }^2}A - 1} \right)}} = \tan A \times \dfrac{{\left( {1 - 2 + 2{{\cos }^2}A} \right)}}{{\left( {2{{\cos }^2}A - 1} \right)}} = \tan A \times \dfrac{{\left( {2{{\cos }^2}A - 1} \right)}}{{\left( {2{{\cos }^2}A - 1} \right)}}
So, we got an equal numerator and denominator. This will give us 11.
sinA2sin3A2cos3AcosA=tanA×1=tanA\Rightarrow \dfrac{{\operatorname{sinA} - 2si{n^3}A}}{{2{{\cos }^3}A - \cos A}} = \tan A \times 1 = \tan A
Hence, we proved the left-hand side equal to the right-hand side in the equation.

Note: In the questions where you need to prove in trigonometric ratios, always choose one side on which you can work easily. You should notice that the use of the identities sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 and sinAcosA=tanA\dfrac{{\sin A}}{{\cos A}} = \tan A was a crucial part of the solution. An alternative approach to the problem can be taken by changing cos2A{\cos ^2}A in the denominator in form of sin2A{\sin ^2}A with the use of the above identities.