Solveeit Logo

Question

Question: Prove that \(\dfrac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}} + \dfrac{{1 + \operatorname{...

Prove that SinA1+CosA+1+CosASinA=2CosecA\dfrac{{\operatorname{Sin} A}}{{1 + \operatorname{Cos} A}} + \dfrac{{1 + \operatorname{Cos} A}}{{\operatorname{Sin} A}} = 2\operatorname{Cos} ecA

Explanation

Solution

Here first we will take the L.C.M of L.H.S equation.
We know that sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 and 1sinA=cosecA\dfrac{1}{{\sin A}} = \cos ecA, simply solve the left hand of equation using these identities and get the value of RHS

Complete step-by-step answer:
Let’s start solving with left hand equation
We have sinA1+cosA+1+cosAsinA\dfrac{{\sin A}}{{1 + \cos A}} + \dfrac{{1 + \cos A}}{{\sin A}} ……….(1)
Taking L.C.M of (1)

=SinA(SinA)+(1+CosA)(1+CosA)(1+CosA)(SinA) =Sin2A+(1+CosA)2(1+CosA)(SinA)  = \dfrac{{\operatorname{Sin} A\left( {\operatorname{Sin} A} \right) + \left( {1 + \operatorname{Cos} A} \right)\left( {1 + \operatorname{Cos} A} \right)}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\\ = \dfrac{{{{\operatorname{Sin} }^2}A + {{(1 + \operatorname{Cos} A)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\\

Apply the formula of (a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2} for (1+cosA)2{(1 + \cos A)^2} we get:-

=Sin2A+(1)2+2(1)(CosA)+(CosA)2(1+CosA)(SinA) =Sin2A+1+2CosA+Cos2A(1+CosA)(SinA)  = \dfrac{{{{\operatorname{Sin} }^2}A + {{\left( 1 \right)}^2} + 2\left( 1 \right)\left( {\operatorname{Cos} A} \right) + {{\left( {\operatorname{Cos} A} \right)}^2}}}{{\left( {1 + \operatorname{Cos} A} \right)(\operatorname{Sin} A)}} \\\ = \dfrac{{{{\operatorname{Sin} }^2}A + 1 + 2\operatorname{Cos} A + {{\operatorname{Cos} }^2}A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\\

We know that Sin2A+Cos2A=1{\operatorname{Sin} ^2}A + {\operatorname{Cos} ^2}A = 1
Therefore putting in the value we get:-

=1+1+2CosA(1+CosA)(SinA)   =2+2CosA(1+CosA)(SinA)  = \dfrac{{1 + 1 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}\; \\\ = \dfrac{{2 + 2\operatorname{Cos} A}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}} \\\

Take 2 as common from numerator we get:-
=2(1+CosA)(1+CosA)(SinA)= \dfrac{{2(1 + \operatorname{Cos} A)}}{{(1 + \operatorname{Cos} A)(\operatorname{Sin} A)}}
Cancelling the terms we get:-
=2SinA= \dfrac{2}{{\operatorname{Sin} A}}
=2.1SinA= 2.\dfrac{1}{{\operatorname{Sin} A}}
Now we know that,
1SinA=CosecA\dfrac{1}{{\operatorname{Sin} A}} = \operatorname{Cos} ecA
Therefore putting in the value we get:-
=2CosecA= 2\operatorname{Cos} ecA
= RHS= {\text{ }}RHS
Since LHS= RHSLHS = {\text{ }}RHS
Hence proved

Note:
In these types of questions students just need to use basic identities of trigonometry then just simplify your question and then put these identities to get your answer.
The identities used should be correct and accurate.
Also, Cosec is the reciprocal of sine