Solveeit Logo

Question

Question: Prove that \(\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n...

Prove that (2n)!n!=135...(2n1)2n.\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.

Explanation

Solution

The factorial of a natural number is defined as the product of all the natural numbers less than or equal to that number. That is the factorial of a natural number nn is the product of the natural numbers from 11 to n.n. So, n!=123...(n1)n.n!=1\cdot 2\cdot 3\cdot ...\cdot \left( n-1 \right)n.

Complete step by step answer:
Consider the given problem (2n)!n!=135...(2n1)2n.\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.
We have already learnt that the factorial of a natural number is defined as the product of all the natural numbers less than or equal to that number.
Suppose we need to find the factorial of a natural number n.n. So, we will get the identity n!=123...(n1)n.n!=1\cdot 2\cdot 3\cdot ...\cdot \left( n-1 \right)n.
Let us consider the right-hand side of the given equation, 135...(2n1)2n.1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.
Here, the product of the odd numbers from 11 to 2n12n-1 is multiplied to 2n.{{2}^{n}}.
Now, we need to make this a fraction in terms of factorials. In order to make this in terms of factorial we are going to multiply and divide it with the product 246...2n.2\cdot 4\cdot 6\cdot ...\cdot 2n.
So, we will get 135...(2n1)2n=135...(2n1)2n246...2n246...2n.1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}\dfrac{2\cdot 4\cdot 6\cdot ...\cdot 2n}{2\cdot 4\cdot 6\cdot ...\cdot 2n}.
We know that 135...(2n1)2n24...2n=12345...2n2n.1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}\cdot 2\cdot 4\cdot ...\cdot 2n=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}.
So, we will get 135...(2n1)2n=12345...2n2n24...2n.1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}=\dfrac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}}{2\cdot 4\cdot ...\cdot 2n}.
By the definition of the factorial, we will get the following 12345...2n=2n!.1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n=2n!.
Therefore, we will get the numerator of the above fraction in terms of factorial.
That is, 12345...2n2n=(2n)!2n24...2n.1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!{{2}^{n}}}{2\cdot 4\cdot ...\cdot 2n}.
Let us consider the denominator of the above fraction, 24...2n.2\cdot 4\cdot ...\cdot 2n. Since all the terms are even, all of them have a common factor. That is, 2.2. If we are taking 22 from each of these numbers, we will get 246...2n=222...2ntimes123...n.2\cdot 4\cdot 6\cdot ...\cdot 2n=2\cdot 2\cdot 2\cdot ...\cdot {{2}_{n times}}\cdot 1\cdot 2\cdot 3\cdot ...\cdot n.
Thus, we will get 12345...2n2n=(2n)!2n12345...n2n.1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!{{2}^{n}}}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n\cdot {{2}^{n}}}.
Let us cancel the common factor from the numerator and the denominator to get 12345...2n2n=(2n)!12345...n.1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n}.
We have 12345...n=n!.1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n=n!.
Therefore, 12345...2n2n=(2n)!n!=LHS.1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!}{n!}=\text{LHS}.
Hence it is proved that (2n)!n!=135...(2n1)2n.\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.

Note: Remember that 0!=1.0!=1. Also, note that (2n)!2n!.\left( 2n \right)!\ne 2n!. We know that if we multiply a number multiple times, then that is equal to the number raised to the number of the times it is multiplied.