Solveeit Logo

Question

Question: Prove that \(\dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} = \dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}{\...

Prove that cotAcosAcotA+cosA=cosecA1cosecA+1 .\dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} = \dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}{\text{ }}{\text{.}}

Explanation

Solution

Hint : In this question, we are asked to prove a trigonometric equality. To solve this question standard trigonometric identities and formulae are required. Firstly, we will take L.H.S. which is cotAcosAcotA+cosA\dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} and then try to prove it equal to R.H.S. by simplifying it with the use of standard formulae. The basic trigonometric conversion identities are: (1)sinx=1cosecx\left( 1 \right)\sin x = \dfrac{1}{{\cos ecx}} i.e. sine and cosecant function are inverse of each other. (2)cosx=1secx\left( 2 \right)\cos x = \dfrac{1}{{\sec x}} i.e. cosine and secant functions are opposite of each other. (3)tanx=1cotx\left( 3 \right)\tan x = \dfrac{1}{{\cot x}} i.e. tangent and cotangent functions are inverse of each other.

Complete step-by-step answer :
The given expression is:
cotAcosAcotA+cosA=cosecA1cosecA+1\Rightarrow \dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} = \dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}
L.H.S.=cotAcosAcotA+cosA{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\cot A - \cos A}}{{\cot A + \cos A}}
By the knowledge of basic trigonometric identities we know that ;
cotx=1tanx=cosxsinx\Rightarrow \cot x = \dfrac{1}{{\tan x}} = \dfrac{{\cos x}}{{\sin x}}
Taking L.H.S. and trying to simplify it , we get ;
Replacing cotangent in terms of sine and cosine in the L.H.S. expression , we get ;
cotAcosAcotA+cosA=cosAsinAcosAcosAsinA+cosA\Rightarrow \dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} = \dfrac{{\dfrac{{\cos A}}{{\sin A}} - \cos A}}{{\dfrac{{\cos A}}{{\sin A}} + \cos A}}
Taking L.C.M. the expression becomes ;
cosAsinAcosAcosAsinA+cosA=cosAsinAcosAsinAcosA+sinAcosAsinA\Rightarrow \dfrac{{\dfrac{{\cos A}}{{\sin A}} - \cos A}}{{\dfrac{{\cos A}}{{\sin A}} + \cos A}} = \dfrac{{\dfrac{{\cos A - \sin A\cos A}}{{\sin A}}}}{{\dfrac{{\cos A + \sin A\cos A}}{{\sin A}}}}
Further simplifying the above expression ;
cosAcosAsinAcosA+cosAsinA\Rightarrow \dfrac{{\cos A - \cos A\sin A}}{{\cos A + \cos A\sin A}}
Taking cosA\cos A outside in both numerator and denominator ;
cosA(1sinA)cosA(1+sinA)\Rightarrow \dfrac{{\cos A\left( {1 - \sin A} \right)}}{{\cos A\left( {1 + \sin A} \right)}}
On further simplification of the above equation, we get ;
=1sinA1+sinA ......(1)= \dfrac{{1 - \sin A}}{{1 + \sin A}}{\text{ }}......\left( 1 \right)
Since the given R.H.S. is in terms of cosecant function, therefore we have to proceed in such a way that we get the L.H.S. function also in terms of cosecant function.
By the standard trigonometric identities we know that;
cosecx=1sinx\Rightarrow \cos ecx = \dfrac{1}{{\sin x}}
So, dividing both numerator and denominator by sinA\sin A in equation 11 , we get ;
1sinA1+sinA=1sinAsinA1+sinAsinA\Rightarrow \dfrac{{1 - \sin A}}{{1 + \sin A}} = \dfrac{{\dfrac{{1 - \sin A}}{{\sin A}}}}{{\dfrac{{1 + \sin A}}{{\sin A}}}}
Rearranging the above expression ;
1sinAsinA1+sinAsinA=1sinAsinAsinA1sinA+sinAsinA\Rightarrow \dfrac{{\dfrac{{1 - \sin A}}{{\sin A}}}}{{\dfrac{{1 + \sin A}}{{\sin A}}}} = \dfrac{{\dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}}}}{{\dfrac{1}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}}}}
Further simplifying the above expression, we get ;
=1sinA11sinA+1= \dfrac{{\dfrac{1}{{\sin A}} - 1}}{{\dfrac{1}{{\sin A}} + 1}}
Using the trigonometric identity stated above, i.e. sinx=1cosecx\sin x = \dfrac{1}{{\cos ecx}} , we can conclude that ;
1sinA11sinA+1=cosecA1cosecA+1=R.H.S.\Rightarrow \dfrac{{\dfrac{1}{{\sin A}} - 1}}{{\dfrac{1}{{\sin A}} + 1}} = \dfrac{{\cos ecA - 1}}{{\cos ecA + 1}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}
L.H.S. = R.H.S.\Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{. = R}}{\text{.H}}{\text{.S}}{\text{.}}
Therefore, cotAcosAcotA+cosA=cosecA1cosecA+1 .\dfrac{{\cot A - \cos A}}{{\cot A + \cos A}} = \dfrac{{\cos ecA - 1}}{{\cos ecA + 1}}{\text{ }}{\text{.}}
Hence proved.

Note : Trigonometric identities are of great importance to solve these kinds of questions. There are three important identities : (1)sin2x+cos2x=1\left( 1 \right){\sin ^2}x + {\cos ^2}x = 1 , from this identity we can also deduce the relations: (i)1sin2x=cos2x\left( {\text{i}} \right)1 - {\sin ^2}x = {\cos ^2}x and (ii)1cos2x=sin2x\left( {{\text{ii}}} \right)1 - {\cos ^2}x = {\sin ^2}x . (2)1+tan2x=sec2x\left( 2 \right)1 + {\tan ^2}x = {\sec ^2}x , from this identity we can also deduce the relations: (i)sec2xtan2x=1\left( {\text{i}} \right){\sec ^2}x - {\tan ^2}x = 1 and (ii)sec2x1=tan2x\left( {{\text{ii}}} \right){\sec ^2}x - 1 = {\tan ^2}x . (3)1+cot2x=cosec2x\left( 3 \right)1 + {\cot ^2}x = \cos e{c^2}x , from this identity we can also deduce the relations: (i)cosec2x1=cot2x\left( {\text{i}} \right)\cos e{c^2}x - 1 = {\cot ^2}x and (ii)cosec2xcot2x=1\left( {{\text{ii}}} \right)\cos e{c^2}x - {\cot ^2}x = 1 .
These identities are called Pythagorean identities. These identities are true for any value of x in the universe.