Question
Question: Prove that \[\dfrac{{{\cot }^{2}}A\left( \sec A-1 \right)}{1+\sin A}={{\sec }^{2}}A\left( \dfrac{1-\...
Prove that 1+sinAcot2A(secA−1)=sec2A(1+secA1−sinA).
Explanation
Solution
Hint: Take LHS individually and by using Trigonometric Identities Trigonometric ratios simplify it. Similarly, take RHS and simplify it.
“Complete step-by-step answer:”
Given the LHS=1+sinAcot2A(secA−1)
We know that cotA=sinAcosAand secA=cosA1
∴LHS=1+sinAsin2Acos2A[cosA1−1]=1+sinAsin2Acos2A[cosA1−cosA]
Cancel out cosAfrom numerator and denominator.
LHS=1+sinAsin2AcosA(1−cosA)
We know, sin2A+cos2A=1