Solveeit Logo

Question

Question: Prove that \[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}} = \ cosec\thet...

Prove that cosθsinθ+1cosθ+sinθ1= cosecθ+cotθ\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}} = \ cosec\theta + \cot \theta

Explanation

Solution

We solve this question by grouping together the term (1sinθ)(1 - \sin \theta ) from both numerator and denominator and then rationalizing the term by multiplying both numerator and denominator by the same value. Using the trigonometric identities like cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 we solve the LHS.

Complete step-by-step answer:
Consider the Left hand side of the equation
cosθsinθ+1cosθ+sinθ1\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}
Group together the term (1sinθ)(1 - \sin \theta ) from both numerator and denominator
cosθ+(1sinθ)cosθ(1sinθ)\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}
Rationalize the fraction by multiplying both numerator and denominator by cosθ+(1sinθ)\cos \theta + (1 - \sin \theta ).

cosθ+(1sinθ)cosθ(1sinθ)×cosθ+(1sinθ)cosθ+(1sinθ) (cosθ+(1sinθ))2(cosθ(1sinθ))×(cosθ(1sinθ))  \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\\ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\\

Using the property (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}, where a=cosθ,b=(1sinθ)a = \cos \theta ,b = (1 - \sin \theta )
(cosθ+(1sinθ))2(cos2θ(1sinθ)2)\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}
Now opening the squares using the property (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab in denominator and the property (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab in the numerator.

(cos2θ+(1sinθ)2+2cosθ(1sinθ))(cos2θ(1+sin2θ2sinθ)) (cos2θ+(1+sin2θ2sinθ)+2cosθ2cosθsinθ)(cos2θ1sin2θ+2sinθ) (cos2θ+1+sin2θ2sinθ+2cosθ2cosθsinθ)(cos2θ1sin2θ+2sinθ)  \Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\\ \Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\\ \Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\\

Now we pair up the terms that can be transformed using trigonometric identities.
((cos2θ+sin2θ)+12sinθ+2cosθ2cosθsinθ)(cos2θ1sin2θ+2sinθ)\Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}
We know that cos2θ+sin2θ=1cos2θ=1sin2θ{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta
We substitute cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 in the numerator and cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta in the denominator.

(1+12sinθ+2cosθ2cosθsinθ)(1sin2θ1sin2θ+2sinθ) (22sinθ+2cosθ2cosθsinθ)(2sin2θ+2sinθ)  \Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\\ \Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\\

Now we take 2 common from both denominator and numerator.
2(1sinθ+cosθcosθsinθ)2(sinθsin2θ)\Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}
Cancel the same terms from both numerator and denominator.
(1sinθ+cosθcosθsinθ)(sinθsin2θ)\Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}
Now we take the terms common in the denominator and numerator.

(1sinθ)+cosθ(1sinθ)sinθ(1sinθ) (1sinθ)(1+cosθ)sinθ(1sinθ)  \Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\\ \Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\\

Cancel out the same terms from both numerator and denominator.
1+cosθsinθ\Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}
Now break the fraction into two parts
1sinθ+cosθsinθ\Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}
Since, we know that  cosecθ=1sinθ,cotθ=cosθsinθ\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}, so substitute the values in the equation
cosecθ+cotθ\Rightarrow \cos ec\theta + \cot \theta
which is equal to RHS of the equation.
Hence Proved

Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type (a+b)(a + b) and denominator of the type (ab)(a - b) or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} to it.
Also, many students group together 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.