Solveeit Logo

Question

Question: Prove that \( \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right)...

Prove that cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)=1\dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1

Explanation

Solution

Hint : Here, to prove that cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)=1\dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 , we will take the LHS of the equation and try to bring it equal to RHS. Now,
cosec(90x)=secx\Rightarrow \cos ec\left( {90^\circ - x} \right) = \sec x
sin(180x)=sinx\Rightarrow \sin \left( {180^\circ - x} \right) = \sin x
cot(360x)=cotx\Rightarrow \cot \left( {360^\circ - x} \right) = - \cot x
sec(180+x)=secx\Rightarrow \sec \left( {180^\circ + x} \right) = - \sec x
tan(90+x)=cotx\Rightarrow \tan \left( {90^\circ + x} \right) = - \cot x
sin(x)=sinx\Rightarrow \sin \left( { - x} \right) = - \sin x
Substituting all these values in LHS, we will get LHS = RHS.

Complete step-by-step answer :
In this question, we have to prove that
cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)=1\dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 - - - - - - - - - - - - - - - - (1)
For proving this, let us take the LHS of the equation (1). Therefore,
LHS=cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)\Rightarrow LHS = \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}}
Now, let us find the value of each term separately.
cosec(90x)\cos ec\left( {90^\circ - x} \right) :
As we know, cosec and sec are complementary to each other, we have a relation between them that
cosec(90x)=secx sec(90x)=cosecx   \Rightarrow \cos ec\left( {90^\circ - x} \right) = \sec x \\\ \Rightarrow \sec \left( {90^\circ - x} \right) = \cos ecx \;
Therefore, cosec(90x)=secx\cos ec\left( {90^\circ - x} \right) = \sec x - - - - - - (2)

sin(180x)\sin \left( {180^\circ - x} \right) :
As x is being subtracted from 180, sin(180x)\sin \left( {180^\circ - x} \right) lies between π\pi and π2\dfrac{\pi }{2} that is the 2nd quadrant. And the sine and cosecant functions are positive in the 2nd quadrant. So, we get
sin(180x)=sinx\Rightarrow \sin \left( {180^\circ - x} \right) = \sin x - - - - - - (3)

cot(360x)\cot \left( {360^\circ - x} \right) :
As, x is being subtracted from 360, cot(360x)\cot \left( {360^\circ - x} \right) lies between 2π2\pi and 3π2\dfrac{{3\pi }}{2} that is 4th quadrant. And the cot function is negative in the 4th quadrant. So, we get
cot(360x)=cotx\Rightarrow \cot \left( {360^\circ - x} \right) = - \cot x - - - - - - (4)

sec(180+x)\sec \left( {180^\circ + x} \right) :
As, we are adding x to 180, sec(180+x)\sec \left( {180^\circ + x} \right) will lie between π\pi and 3π2\dfrac{{3\pi }}{2} that is 3rd quadrant. And in the 3rd quadrant, sec is negative. So, we get
sec(180+x)=secx\Rightarrow \sec \left( {180^\circ + x} \right) = - \sec x - - - - - - (5)

tan(90+x)\tan \left( {90^\circ + x} \right) :
Now, here as we are adding x into 90, tan(90+x)\tan \left( {90^\circ + x} \right) will lie between π\pi and π2\dfrac{\pi }{2} that is 2nd quadrant. And as the angle is π2\dfrac{\pi }{2} , we have to change the function from tan to cot. Here, cot will be negative in the 2nd quadrant. So, we get
tan(90+x)=cotx\Rightarrow \tan \left( {90^\circ + x} \right) = - \cot x - - - - - - (6)

sin(x)\sin \left( { - x} \right) :
Now, we have a relation that
sin(θ)=sinθ\Rightarrow \sin \left( { - \theta } \right) = - \sin \theta
Therefore,
sin(x)=sinx\Rightarrow \sin \left( { - x} \right) = - \sin x - - - - - - (7)

So, now putting the values of equations (2), (3), (4), (5), (6), (7) in equation (1), we get
LHS=cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)\Rightarrow LHS = \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}}
=secxsinx(cotx)secx(cotx)(sinx) =1(1)(1) =1   = \dfrac{{\sec x \cdot \sin x \cdot \left( { - \cot x} \right)}}{{ - \sec x \cdot \left( { - \cot x} \right) \cdot \left( { - \sin x} \right)}} \\\ = \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}} \\\ = 1 \;
Hence, LHS = RHS.
Therefore, we proved that cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)=1\dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 .

Note : Here, note that when the angle is made with X –Axis, we don’t change the trigonometric function and just change the sign according to the quadrant. But, when the angle is being made between X – Axis and Y – Axis, then we need to change the sign according to the quadrant and the trigonometric function as well.