Solveeit Logo

Question

Question: Prove that \(\dfrac{{\cos ec\left( {{{90}^ \circ } - x} \right)\sin \left( {{{180}^ \circ } - x} \ri...

Prove that cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)=1\dfrac{{\cos ec\left( {{{90}^ \circ } - x} \right)\sin \left( {{{180}^ \circ } - x} \right)\cot \left( {{{360}^ \circ } - x} \right)}}{{\sec \left( {{{180}^ \circ } + x} \right)\tan \left( {{{90}^ \circ } + x} \right)\sin \left( { - x} \right)}} = 1

Explanation

Solution

It is known that cosec(90x)=secx\cos ec\left( {{{90}^ \circ } - x} \right) = \sec x,sin(180x)=sinx\sin \left( {{{180}^ \circ } - x} \right) = \sin x,cot(360x)=cotx\cot \left( {{{360}^ \circ } - x} \right) = - \cot x, sec(180+x)=secx\sec \left( {{{180}^ \circ } + x} \right) = - \sec x,tan(90+x)=cotx\tan \left( {{{90}^ \circ } + x} \right) = - \cot xand sin(x)=sinx\sin \left( { - x} \right) = - \sin x. We do this conversion and simplify this if L.H.S will be equal to 1 then it will be proved that L.H.S=R.H.SL.H.S = R.H.S.

Complete step-by-step answer:
L.H.S=cosec(90x)sin(180x)cot(360x)sec(180+x)tan(90+x)sin(x)L.H.S = \dfrac{{\cos ec\left( {{{90}^ \circ } - x} \right)\sin \left( {{{180}^ \circ } - x} \right)\cot \left( {{{360}^ \circ } - x} \right)}}{{\sec \left( {{{180}^ \circ } + x} \right)\tan \left( {{{90}^ \circ } + x} \right)\sin \left( { - x} \right)}}
Substitute cosec(90x)=secx\cos ec\left( {{{90}^ \circ } - x} \right) = \sec x,sin(180x)=sinx\sin \left( {{{180}^ \circ } - x} \right) = \sin x,cot(360x)=cotx\cot \left( {{{360}^ \circ } - x} \right) = - \cot x, sec(180+x)=secx\sec \left( {{{180}^ \circ } + x} \right) = - \sec x,tan(90+x)=cotx\tan \left( {{{90}^ \circ } + x} \right) = - \cot xand sin(x)=sinx\sin \left( { - x} \right) = - \sin x, we get,
secxsinx(cotx)(secx)(cotx)(sinx)\Rightarrow \dfrac{{\sec x\sin x\left( { - \cot x} \right)}}{{\left( { - \sec x} \right)\left( { - \cot x} \right)\left( { - \sin x} \right)}}
As we can see every term get cancelled
L.H.S=1\therefore L.H.S = 1
Given R.H.S=1R.H.S = 1
Therefore, L.H.S=R.H.SL.H.S = R.H.Sproved

Note: Some important formula. Try to remember these formulas to solve these types of problems.

sin(90x)=cosx tan(90x)=cotx cosec(90x)=secx cos(90x)=sinx cot(90x)=tanx sec(90x)=cosecx  \sin ({90^ \circ } - x) = \cos x \\\ \tan ({90^ \circ } - x) = \cot x \\\ \cos ec({90^ \circ } - x) = \sec x \\\ \cos \left( {{{90}^ \circ } - x} \right) = \sin x \\\ \cot \left( {{{90}^ \circ } - x} \right) = \tan x \\\ \sec \left( {{{90}^ \circ } - x} \right) = \cos ecx \\\ sin(90+x)=cosx tan(90+x)=cotx cosec(90+x)=secx cos(90+x)=sinx cot(90+x)=tanx sec(90+x)=cosecx \sin ({90^ \circ } + x) = \cos x \\\ \tan ({90^ \circ } + x) = - \cot x \\\ \cos ec({90^ \circ } + x) = \sec x \\\ \cos \left( {{{90}^ \circ } + x} \right) = - \sin x \\\ \cot \left( {{{90}^ \circ } + x} \right) = - \tan x \\\ \sec \left( {{{90}^ \circ } + x} \right) = - \cos ecx \\\

sin(180+x)=cosx tan(180+x)=cotx cosec(180+x)=secx cos(180+x)=sinx cot(180+x)=tanx sec(180+x)=cosecx  \sin ({180^ \circ } + x) = - \cos x \\\ \tan ({180^ \circ } + x) = \cot x \\\ \cos ec({180^ \circ } + x) = - \sec x \\\ \cos \left( {{{180}^ \circ } + x} \right) = - \sin x \\\ \cot \left( {{{180}^ \circ } + x} \right) = \tan x \\\ \sec \left( {{{180}^ \circ } + x} \right) = - \cos ecx \\\

sin(360x)=cosx tan(360x)=cotx cosec(360x)=secx cos(360x)=sinx cot(360x)=tanx sec(360x)=cosecx  \sin ({360^ \circ } - x) = - \cos x \\\ \tan ({360^ \circ } - x) = - \cot x \\\ \cos ec({360^ \circ } - x) = - \sec x \\\ \cos \left( {{{360}^ \circ } - x} \right) = \sin x \\\ \cot \left( {{{360}^ \circ } - x} \right) = - \tan x \\\ \sec \left( {{{360}^ \circ } - x} \right) = \cos ecx \\\