Question
Question: Prove that \(\dfrac{{\cos ec\left( {{{90}^ \circ } - x} \right)\sin \left( {{{180}^ \circ } - x} \ri...
Prove that sec(180∘+x)tan(90∘+x)sin(−x)cosec(90∘−x)sin(180∘−x)cot(360∘−x)=1
Solution
It is known that cosec(90∘−x)=secx,sin(180∘−x)=sinx,cot(360∘−x)=−cotx, sec(180∘+x)=−secx,tan(90∘+x)=−cotxand sin(−x)=−sinx. We do this conversion and simplify this if L.H.S will be equal to 1 then it will be proved that L.H.S=R.H.S.
Complete step-by-step answer:
L.H.S=sec(180∘+x)tan(90∘+x)sin(−x)cosec(90∘−x)sin(180∘−x)cot(360∘−x)
Substitute cosec(90∘−x)=secx,sin(180∘−x)=sinx,cot(360∘−x)=−cotx, sec(180∘+x)=−secx,tan(90∘+x)=−cotxand sin(−x)=−sinx, we get,
⇒(−secx)(−cotx)(−sinx)secxsinx(−cotx)
As we can see every term get cancelled
∴L.H.S=1
Given R.H.S=1
Therefore, L.H.S=R.H.Sproved
Note: Some important formula. Try to remember these formulas to solve these types of problems.
sin(180∘+x)=−cosx tan(180∘+x)=cotx cosec(180∘+x)=−secx cos(180∘+x)=−sinx cot(180∘+x)=tanx sec(180∘+x)=−cosecx
sin(360∘−x)=−cosx tan(360∘−x)=−cotx cosec(360∘−x)=−secx cos(360∘−x)=sinx cot(360∘−x)=−tanx sec(360∘−x)=cosecx