Solveeit Logo

Question

Question: Prove that \(\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A\)?...

Prove that cosAsinA+1cosA+sinA1=cscA+cotA\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A?

Explanation

Solution

We first use the submultiple formulas 1+cosA=2cos2A21+\cos A=2{{\cos }^{2}}\dfrac{A}{2}, 1cosA=2sin2A21-\cos A=2{{\sin }^{2}}\dfrac{A}{2}, sinA=2sinA2cosA2\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2} to break the expression. Then we take 2cosA22\cos \dfrac{A}{2} and 2sinA22\sin \dfrac{A}{2} common. We omit the (cosA2sinA2)\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right) part and multiply cosA2\cos \dfrac{A}{2}. The final multiplication gives the right hand part of 1+cosAsinA\dfrac{1+\cos A}{\sin A} on simplification. .

Complete step by step solution:
We first simplify the left-hand side expression of cosAsinA+1cosA+sinA1\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}.
We use the formulas of submultiple 1+cosA=2cos2A21+\cos A=2{{\cos }^{2}}\dfrac{A}{2}, 1cosA=2sin2A21-\cos A=2{{\sin }^{2}}\dfrac{A}{2}, sinA=2sinA2cosA2\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.
We get cosAsinA+1cosA+sinA1=(1+cosA)sinAsinA(1cosA)\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 1+\cos A \right)-\sin A}{\sin A-\left( 1-\cos A \right)}.
So, cosAsinA+1cosA+sinA1=2cos2A22sinA2cosA22sinA2cosA22sin2A2\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2{{\cos }^{2}}\dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}-2{{\sin }^{2}}\dfrac{A}{2}}.
Now we take 2cosA22\cos \dfrac{A}{2} and 2sinA22\sin \dfrac{A}{2} common from the numerator and the denominator respectively.
2cos2A22sinA2cosA22sinA2cosA22sin2A2=2cosA2(cosA2sinA2)2sinA2(cosA2sinA2)\dfrac{2{{\cos }^{2}}\dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}-2{{\sin }^{2}}\dfrac{A}{2}}=\dfrac{2\cos \dfrac{A}{2}\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)}{2\sin \dfrac{A}{2}\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)}.
We omit the (cosA2sinA2)\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right) part from both the numerator and the denominator.
We get cosAsinA+1cosA+sinA1=2cosA22sinA2\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}}.
We now multiply cosA2\cos \dfrac{A}{2} part to both the numerator and the denominator.
We get cosAsinA+1cosA+sinA1=2cosA2cosA22sinA2cosA2=2cos2A22sinA2cosA2\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\cos \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}.
We use the submultiple formulas again to get
cosAsinA+1cosA+sinA1 =2cos2A22sinA2cosA2 =1+cosAsinA \begin{aligned} & \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1} \\\ & =\dfrac{2{{\cos }^{2}}\dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \\\ & =\dfrac{1+\cos A}{\sin A} \\\ \end{aligned}
We now break the summation and get cosAsinA+1cosA+sinA1=1sinA+cosAsinA=cscA+cotA\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A}=\csc A+\cot A.
Thus proved cosAsinA+1cosA+sinA1=cscA+cotA\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A.

Note:
We can also simplify the right-hand part through back process solving to reach the common part of 2cosA22sinA2\dfrac{2\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}}. As the two parts give the same solution, we can say that both of the expressions are equal.