Question
Question: Prove that \(\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A\)?...
Prove that cosA+sinA−1cosA−sinA+1=cscA+cotA?
Solution
We first use the submultiple formulas 1+cosA=2cos22A, 1−cosA=2sin22A, sinA=2sin2Acos2A to break the expression. Then we take 2cos2A and 2sin2A common. We omit the (cos2A−sin2A) part and multiply cos2A. The final multiplication gives the right hand part of sinA1+cosA on simplification. .
Complete step by step solution:
We first simplify the left-hand side expression of cosA+sinA−1cosA−sinA+1.
We use the formulas of submultiple 1+cosA=2cos22A, 1−cosA=2sin22A, sinA=2sin2Acos2A.
We get cosA+sinA−1cosA−sinA+1=sinA−(1−cosA)(1+cosA)−sinA.
So, cosA+sinA−1cosA−sinA+1=2sin2Acos2A−2sin22A2cos22A−2sin2Acos2A.
Now we take 2cos2A and 2sin2A common from the numerator and the denominator respectively.
2sin2Acos2A−2sin22A2cos22A−2sin2Acos2A=2sin2A(cos2A−sin2A)2cos2A(cos2A−sin2A).
We omit the (cos2A−sin2A) part from both the numerator and the denominator.
We get cosA+sinA−1cosA−sinA+1=2sin2A2cos2A.
We now multiply cos2A part to both the numerator and the denominator.
We get cosA+sinA−1cosA−sinA+1=2sin2Acos2A2cos2Acos2A=2sin2Acos2A2cos22A.
We use the submultiple formulas again to get
cosA+sinA−1cosA−sinA+1=2sin2Acos2A2cos22A=sinA1+cosA
We now break the summation and get cosA+sinA−1cosA−sinA+1=sinA1+sinAcosA=cscA+cotA.
Thus proved cosA+sinA−1cosA−sinA+1=cscA+cotA.
Note:
We can also simplify the right-hand part through back process solving to reach the common part of 2sin2A2cos2A. As the two parts give the same solution, we can say that both of the expressions are equal.