Solveeit Logo

Question

Question: Prove that \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]?...

Prove that cosAsinA+1cosA+sinA1=cscA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A?

Explanation

Solution

Hint : We take LHS and simplify it to get RHS. We divide the numerator and the denominator by Sine function. We know that cotangent is the ratio of cosine to sine function and using the relation between cosine and cotangent we can solve this.

Complete step by step solution:
Given
cosAsinA+1cosA+sinA1=cscA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A
Now take
LHS=cosAsinA+1cosA+sinA1LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} and RHS=cscA+cotARHS = \csc A + \cot A.
Now take LHS,
LHS=cosAsinA+1cosA+sinA1LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}
Now divide the numerator and denominator by sinA\sin A
LHS=(cosAsinA+1sinA)(cosA+sinA1sinA)LHS = \dfrac{{\left( {\dfrac{{\cos A - \sin A + 1}}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A + \sin A - 1}}{{\sin A}}} \right)}}
LHS=(cosAsinAsinAsinA+1sinA)(cosAsinA+sinAsinA1sinA)LHS = \dfrac{{\left( {\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}} \right)}}
LHS=(cosAsinA1+1sinA)(cosAsinA+11sinA)LHS = \dfrac{{\left( {\dfrac{{\cos A}}{{\sin A}} - 1 + \dfrac{1}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A}}{{\sin A}} + 1 - \dfrac{1}{{\sin A}}} \right)}}
We know cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A and 1sinA=cscA\dfrac{1}{{\sin A}} = \csc Athen we have,
LHS=cotA1+cscAcotA+1cscALHS = \dfrac{{\cot A - 1 + \csc A}}{{\cot A + 1 - \csc A}}
We know csc2Acot2A=1{\csc ^2}A - {\cot ^2}A = 1, applying this in the numerator we have,
LHS=cotA+cscA(csc2Acot2A)cotA+1cscALHS = \dfrac{{\cot A + \csc A - \left( {{{\csc }^2}A - {{\cot }^2}A} \right)}}{{\cot A + 1 - \csc A}}
Now applying a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) then we have,
LHS=cotA+cscA((cscAcotA)(cscA+cotA))cotA+1cscALHS = \dfrac{{\cot A + \csc A - \left( {\left( {\csc A - \cot A} \right)\left( {\csc A + \cot A} \right)} \right)}}{{\cot A + 1 - \csc A}}
Now raking cscA+cotA\csc A + \cot A common we have,
LHS=(cscA+cotA)(1(cscAcotA))cotA+1cscALHS = \dfrac{{\left( {\csc A + \cot A} \right)\left( {1 - \left( {\csc A - \cot A} \right)} \right)}}{{\cot A + 1 - \csc A}}
LHS=(cscA+cotA)(1cscA+cotA)cotA+1cscALHS = \dfrac{{\left( {\csc A + \cot A} \right)\left( {1 - \csc A + \cot A} \right)}}{{\cot A + 1 - \csc A}}
Now cancelling the terms we have,
LHS=cscA+cotALHS = \csc A + \cot A
LHS=RHS\Rightarrow LHS = RHS.
Thus cosAsinA+1cosA+sinA1=cscA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A. Hence proved.

Note : Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.