Question
Question: Prove that \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\]....
Prove that cosA+sinA−1cosA−sinA+1=cosecA+cotA.
Solution
For proving cosA+sinA−1cosA−sinA+1=cosecA+cotA, we divide the LHS part of the equation by sinA and convert this into cotA+1−cosecAcotA−1+cosecA and now we substitute identity in place of 1 i.e. cosec2A−cot2A=1 in numerator after this we apply an identity in the numerator i.e. a2−b2=(a+b)(a−b) after applying this identity we get terms as cotA+1−cosecA(cosecA+cotA)(1−cosecA+cotA) and we cancel out the like terms and we got our answer which is equal to the RHS.
Complete step-by-step answer:
By taking LHS cosA+sinA−1cosA−sinA+1 and we divide each term of numerator and denominator by sinA.
We get,
sinAcosA+sinAsinA−sinA1sinAcosA−sinAsinA+sinA1
After solving we get the equation as,
cotA+1−cosecAcotA−1+cosecA
Now, in numerator in place of 1 we insert an identity which is,
cosec2A−cot2A=1
We get the result as,
cotA+1−cosecAcotA−(cosec2A−cot2A)+cosecA
Now, we put an algebraic identity which is
a2−b2=(a+b)(a−b) where, a=cosecA,b=cotA
We get,
cotA+1−cosecAcosecA+cotA−[(cosecA+cotA)(cosecA−cotA)]
Now by taking (cosecA+cotA) we get the equation as,
cotA+1−cosecA(cosecA+cotA)[1−(cosecA−cotA)]
By solving bracket we get
$$$$$$\dfrac{{(\cos ecA + \cot A)[\cot A + 1 - \cos ecA]}}{{\cot A + 1 - \cos ecA}}Byeliminatingtheliketermsi.e.\cot A + 1 - \cos ecAWeget,\cos ecA + \cot A$$
=RHS
Hence Proved
Note: Alternate Method to solve the above question
By taking LHS
cosA+(sinA−1)cosA−(sinA−1)
And by dividing both numerator and denominator by cosA+sinA−1
We get,
=cosA+(sinA−1)cosA−(sinA−1)×cosA+(sinA−1)cosA+(sinA−1)
By applying identities (i) a2−b2=(a+b)(a−b) in numerator, (ii) (a+b)2=a2+b2+2ab in denominator
We get,
=[cosA+(sinA−1)]2cos2A−(sinA−1)2
=cos2A+(sinA−1)2+2cosA×(sinA−1)cos2A−(sinA−1)2
Now we apply identity (a−b)2=a2+b2−2ab on sinA−1 in both numerator and denominator
We get,
=cos2A+sin2A+1−2sinA+2cosAsinA−2cosAcos2A−(sin2A+1−2sinA)
As, cos2A+sin2A=1
=1+1−2sinA+2cosAsinA−2cosAcos2A−sin2A−1+2sinA
=2−2sinA+2cosAsinA−2cosAcos2A−(1−cos2A)−1+2sinA
=2(1−sinA)+2cosA(sinA−1)cos2A−1+cos2A−1+2sinA
=2(1−sinA)−2cosA(1−sinA)2cos2A−2+2sinA
Taking (-2) common from numerator and 2(1−sinA) common from denominator
We get
=2(1−sinA)(1−cosA)−2(1−cos2A−sinA)
=(1−sinA)(1−cosA)−(sin2A−sinA)
Taking sinA common in numerator we get,
=(1−sinA)(1−cosA)−sinA(sinA−1)
=(1−sinA)(1−cosA)sinA(1−sinA)
=(1−cosA)sinA
Now multiply and divide numerator and denominator by (1+cosA)
=(1−cosA)sinA×(1+cosA)(1+cosA)
We get
=1−cos2AsinA×(1+cosA)
=sin2AsinA×(1+cosA)
We get
=sinA1+cosA
i.e. sinA1+sinAcosA
=cosecA+cotA
=RHS