Solveeit Logo

Question

Question: Prove that \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\]....

Prove that cosAsinA+1cosA+sinA1=cosecA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A.

Explanation

Solution

For proving cosAsinA+1cosA+sinA1=cosecA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A, we divide the LHS part of the equation by sinA\sin A and convert this into cotA1+cosecAcotA+1cosecA\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}} and now we substitute identity in place of 1 i.e. cosec2Acot2A=1\cos e{c^2}A - {\cot ^2}A = 1 in numerator after this we apply an identity in the numerator i.e. a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) after applying this identity we get terms as (cosecA+cotA)(1cosecA+cotA)cotA+1cosecA\dfrac{{(\cos ecA + \cot A)(1 - \cos ecA + \cot A)}}{{\cot A + 1 - \cos ecA}} and we cancel out the like terms and we got our answer which is equal to the RHS.

Complete step-by-step answer:
By taking LHS cosAsinA+1cosA+sinA1\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} and we divide each term of numerator and denominator by sinA\sin A.
We get,
cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA1sinA\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}
After solving we get the equation as,
cotA1+cosecAcotA+1cosecA\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}
Now, in numerator in place of 1 we insert an identity which is,
cosec2Acot2A=1\cos e{c^2}A - {\cot ^2}A = 1
We get the result as,
cotA(cosec2Acot2A)+cosecAcotA+1cosecA\dfrac{{\cot A - (\cos e{c^2}A - {{\cot }^2}A) + \cos ecA}}{{\cot A + 1 - \cos ecA}}
Now, we put an algebraic identity which is
a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) where, a=cosecA,b=cotAa = \cos ecA,b = \cot A
We get,
cosecA+cotA[(cosecA+cotA)(cosecAcotA)]cotA+1cosecA\dfrac{{\cos ecA + \cot A - [(\cos ecA + \cot A)(\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}
Now by taking (cosecA+cotA)(\cos ecA + \cot A) we get the equation as,
(cosecA+cotA)[1(cosecAcotA)]cotA+1cosecA\dfrac{{(\cos ecA + \cot A)[1 - (\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}
By solving bracket we get
$$$$$$\dfrac{{(\cos ecA + \cot A)[\cot A + 1 - \cos ecA]}}{{\cot A + 1 - \cos ecA}}Byeliminatingtheliketermsi.e. By eliminating the like terms i.e.\cot A + 1 - \cos ecAWeget, We get, \cos ecA + \cot A$$
=RHS
Hence Proved

Note: Alternate Method to solve the above question
By taking LHS
cosA(sinA1)cosA+(sinA1)\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}}
And by dividing both numerator and denominator by cosA+sinA1\cos A + \sin A - 1
We get,
=cosA(sinA1)cosA+(sinA1)×cosA+(sinA1)cosA+(sinA1)\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}} \times \dfrac{{\cos A + (\sin A - 1)}}{{\cos A + (\sin A - 1)}}
By applying identities (i) a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) in numerator, (ii) (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab in denominator
We get,
=cos2A(sinA1)2[cosA+(sinA1)]2\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{[\cos A + (\sin A - 1)]}^2}}}
=cos2A(sinA1)2cos2A+(sinA1)2+2cosA×(sinA1)\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{\cos }^2}A + {{(\sin A - 1)}^2} + 2\cos A \times (\sin A - 1)}}
Now we apply identity (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab on sinA1\sin A - 1 in both numerator and denominator
We get,
=cos2A(sin2A+12sinA)cos2A+sin2A+12sinA+2cosAsinA2cosA\dfrac{{{{\cos }^2}A - ({{\sin }^2}A + 1 - 2\sin A)}}{{{{\cos }^2}A + {{\sin }^2}A + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}
As, cos2A+sin2A=1{\cos ^2}A + {\sin ^2}A = 1
=cos2Asin2A1+2sinA1+12sinA+2cosAsinA2cosA\dfrac{{{{\cos }^2}A - {{\sin }^2}A - 1 + 2\sin A}}{{1 + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}
=cos2A(1cos2A)1+2sinA22sinA+2cosAsinA2cosA\dfrac{{{{\cos }^2}A - (1 - {{\cos }^2}A) - 1 + 2\sin A}}{{2 - 2\sin A + 2\cos A\sin A - 2\cos A}}
=cos2A1+cos2A1+2sinA2(1sinA)+2cosA(sinA1)\dfrac{{{{\cos }^2}A - 1 + {{\cos }^2}A - 1 + 2\sin A}}{{2(1 - \sin A) + 2\cos A(\sin A - 1)}}
=2cos2A2+2sinA2(1sinA)2cosA(1sinA)\dfrac{{2{{\cos }^2}A - 2 + 2\sin A}}{{2(1 - \sin A) - 2\cos A(1 - \sin A)}}
Taking (-2) common from numerator and 2(1sinA)2(1 - \sin A) common from denominator
We get
=2(1cos2AsinA)2(1sinA)(1cosA)\dfrac{{ - 2(1 - {{\cos }^2}A - \sin A)}}{{2(1 - \sin A)(1 - \cos A)}}
=(sin2AsinA)(1sinA)(1cosA)\dfrac{{ - ({{\sin }^2}A - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}
Taking sinA\sin A common in numerator we get,
=sinA(sinA1)(1sinA)(1cosA)\dfrac{{ - \sin A(\sin A - 1)}}{{(1 - \sin A)(1 - \cos A)}}
=sinA(1sinA)(1sinA)(1cosA)\dfrac{{\sin A(1 - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}
=sinA(1cosA)\dfrac{{\sin A}}{{(1 - \cos A)}}
Now multiply and divide numerator and denominator by (1+cosA)(1 + \cos A)
=sinA(1cosA)×(1+cosA)(1+cosA)\dfrac{{\sin A}}{{(1 - \cos A)}} \times \dfrac{{(1 + \cos A)}}{{(1 + \cos A)}}
We get
=sinA×(1+cosA)1cos2A\dfrac{{\sin A \times (1 + \cos A)}}{{1 - {{\cos }^2}A}}
=sinA×(1+cosA)sin2A\dfrac{{\sin A \times (1 + \cos A)}}{{{{\sin }^2}A}}
We get
=1+cosAsinA\dfrac{{1 + \cos A}}{{\sin A}}
i.e. 1sinA+cosAsinA\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}
=cosecA+cotA\cos ecA + \cot A
=RHS