Solveeit Logo

Question

Question: Prove that, \(\dfrac{{\cos A.\cot A}}{{1 - \sin A}} = 1 + \cos ecA\) ....

Prove that, cosA.cotA1sinA=1+cosecA\dfrac{{\cos A.\cot A}}{{1 - \sin A}} = 1 + \cos ecA .

Explanation

Solution

In this question, there is a trigonometric equation. But the task is not to find the value of the concerned angle AA, but to prove both sides of the above equation to be equal. Again, a trigonometric function is a real valued function which has an angle of a right-angled triangle when the two side lengths of the triangle are divided. Here, cos,\cos , cot\cot , sin\sin and cosec\cos ec are all trigonometric functions.

Complete step-by-step solution:
Here is to prove that cosA.cotA1sinA=1+cosecA\dfrac{{\cos A.\cot A}}{{1 - \sin A}} = 1 + \cos ecA.
Now,
Left Hand Side, L.H.S.,
cosA.cotA1sinA=cosA.(cosAsinA)1sinA\dfrac{{\cos A.\cot A}}{{1 - \sin A}} = \dfrac{{\cos A.\left( {\dfrac{{\cos A}}{{\sin A}}} \right)}}{{1 - \sin A}} [ as cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}}]
=cos2AsinA(1sinA)= \dfrac{{{{\cos }^2}A}}{{\sin A\left( {1 - \sin A} \right)}} … … …(i)
But we know, sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 i.e., cos2A=1sin2A{\cos ^2}A = 1 - {\sin ^2}A.
Then putting the value of cos2A=1sin2A{\cos ^2}A = 1 - {\sin ^2}A in (i), we obtain =1sin2AsinA(1sinA)=(1+sinA)(1sinA)sinA(1sinA) = \dfrac{{1 - {{\sin }^2}A}}{{\sin A\left( {1 - \sin A} \right)}} = \dfrac{{\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)}}{{\sin A\left( {1 - \sin A} \right)}}.
As because, a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right), then 1sin2A=(1+sinA)(1sinA)1 - {\sin ^2}A = \left( {1 + \sin A} \right)\left( {1 - \sin A} \right) .
Therefore, =1+sinAsinA=1sinA+sinAsinA=cosecA+1 = \dfrac{{1 + \sin A}}{{\sin A}} = \dfrac{1}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} = \cos ecA + 1 =Right Hand Side[R.H.S.]
Therefore, cosA.cotA1sinA=1+cosecA\dfrac{{\cos A.\cot A}}{{1 - \sin A}} = 1 + \cos ecA. i.e., L.H.S.=R.H.S.

Note: Students should note that the easiest way to solve these types of problems is to use the normal trigonometric formulae. In this particular problem, we have used the formula sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1, cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}. There are few more formulae for the relations in trigonometric functions. Any kind of trigonometric problem can be evaluated or proved in this method.