Solveeit Logo

Question

Question: Prove that \(\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\sin A+\cos A\)...

Prove that
cosA1tanA+sinA1cotA=sinA+cosA\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\sin A+\cos A

Explanation

Solution

- Hint:Convert the whole expression to sinθ,cosθ\sin \theta ,\cos \theta by replacing
tanθsinθcosθ, cotθcosθsinθ \begin{aligned} & \tan \theta \Rightarrow \dfrac{\sin \theta }{\cos \theta }, \\\ & \cot \theta \Rightarrow \dfrac{\cos \theta }{\sin \theta } \\\ \end{aligned}
Hence, simplify the left hand side of the given equation and use the algebraic identity of a2b2{{a}^{2}}-{{b}^{2}} which can be given as
a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)

Complete step-by-step solution -

So, we have to prove
cosA1tanA+sinA1cotA=sinA+cosA......................(i)\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}=\sin A+\cos A......................\left( i \right)
As, we can prove the above relation by simplifying the left hand side of the equation and hence try to get the relation in the right hand side of the equation. So, we have LHS of the equation (i) as
LHS=cosA1tanA+sinA1cotA........................(ii)LHS=\dfrac{\cos A}{1-\tan A}+\dfrac{\sin A}{1-\cot A}........................\left( ii \right)
Now, we can get the whole relation of LHS by replacing tanA,cotA\tan A,\cot A using the relation
tanθ=sinθcosθ,cotθ=cosθsinθ.....................(iii)\tan \theta =\dfrac{\sin \theta }{\cos \theta },cot\theta =\dfrac{\cos \theta }{\sin \theta }.....................\left( iii \right)
Now, we can get equation (i) as
LHS=cosA1sinAcosA+sinA1cosAsinA LHS=cosAcosAsinAcosA+sinAsinAcosAsinA LHS=cosA×cosAcosAcosA+sinA×sinAsinAcosA \begin{aligned} & LHS=\dfrac{\cos A}{1-\dfrac{\sin A}{\cos A}}+\dfrac{\sin A}{1-\dfrac{\cos A}{\sin A}} \\\ & LHS=\dfrac{\cos A}{\dfrac{\cos A-\sin A}{\cos A}}+\dfrac{\sin A}{\dfrac{\sin A-\cos A}{\operatorname{sinA}}} \\\ & LHS=\dfrac{\cos A\times \cos A}{\cos A-\cos A}+\dfrac{\sin A\times \sin A}{\sin A-\cos A} \\\ \end{aligned}

LHS=cos2AcosAsinA+sin2AsinAcosALHS=\dfrac{{{\cos }^{2}}A}{\cos A-\sin A}+\dfrac{{{\sin }^{2}}A}{\sin A-\cos A}
Now, taking ‘-‘ sign common from the second term of the above expression, we get
LHS=cos2AcosAsinAsin2AcosAsinA LHS=cos2Asin2AcosAsinA..........................(iv) \begin{aligned} & LHS=\dfrac{{{\cos }^{2}}A}{\cos A-\sin A}-\dfrac{{{\sin }^{2}}A}{\cos A-\sin A} \\\ & LHS=\dfrac{{{\cos }^{2}}A-{{\sin }^{2}}A}{\cos A-\sin A}..........................\left( iv \right) \\\ \end{aligned}
Now, we can use the algebraic identity of a2b2{{a}^{2}}-{{b}^{2}} with the numerator of the equation (iv). So, identity is given as
a2b2=(ab)(a+b)...................(v){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)...................\left( v \right)
Hence, we can re-write the numerator of the equation (iv) with the help of equation (v) as
LHS=(cosA)2(sinA)2cosAsinA LHS=(cosAsinA)(cosA+sinA)(cosAsinA) \begin{aligned} & LHS=\dfrac{{{\left( \cos A \right)}^{2}}-{{\left( \sin A \right)}^{2}}}{\cos A-\sin A} \\\ & LHS=\dfrac{\left( \cos A-\sin A \right)\left( \cos A+\sin A \right)}{\left( \cos A-\sin A \right)} \\\ \end{aligned}
Now, we can observe that the term cosAsinA\cos A-\sin A is common to the numerator and denominator of the equation of LHS. So, we can cancel out the same term (cosAsinA)\left( \cos A-\sin A \right) from the expression of LHS and hence, we get value of LHS as
LHS=cosA+sinA,sinA+cosA....................(vi)LHS=\cos A+\sin A,\sin A+\cos A....................\left( vi \right)
Now, we can observe the simplified values of LHS of the equation (i) as cosA+sinA\cos A+\sin A which is the same as the value of RHS of the equation (i). Hence, we get
LHS=RHS=sinA+cosALHS=RHS=\sin A+\cos A
Hence, the given expression in the problem is proved.

Note: Converting the whole expression to sinθ,cosθ\sin \theta ,\cos \theta using relation
tanθ=sinθcosθ,cotθ=cosθsinθ\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }
Is the key point of the problem. One may take LCM of 1tanθ,1cotθ1-\tan \theta ,1-\cot \theta and solve them in terms of tanθ,cotθ\tan \theta ,\cot \theta and hence convert the result to sinθ,cosθ\sin \theta ,\cos \theta finally.
Don’t confuse the identities of tanθ,cotθ\tan \theta ,\cot \theta . As one may apply formulae of
tanθ,cotθcosθsinθ,sinθcosθ\tan \theta ,\cot \theta \Rightarrow \dfrac{\cos \theta }{\sin \theta },\dfrac{\sin \theta }{\cos \theta }
Which are wrong and just opposite to each other. So, be clear with the relations of them. One may go wrong if he or she puts the root of the given problem as ‘-3’ by getting confused with the factor (x – 3). So, don’t confuse with the factor and root terminologies. Root of any factor can be calculated by equating the factor to 0.