Question
Question: Prove that \[\dfrac{{\cos A}}{{1 + \sin A}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]...
Prove that 1+sinAcosA=tan(4π−2A)
Solution
Hint : Here, we need to prove the given equation. And for this, we will solve the LHS part and compare it with the RHS part. We will also use some trigonometric ratios identities like, 1=cos2A+sin2A , cos2A=cos2A−sin2A , sin2A=2sinAcosA and tan(A−B)=1+tanAtanBtanA−tanB . Also we will use some formulas too and they are, a2−b2=(a−b)(a+b) and a2+2ab+b2=(a+b)2 . We must also know the value of tan(4π)=1 . We will use all these identities to get the final output.
Complete step-by-step answer :
Given that,
1+sinAcosA=tan(4π−2A)
Here, we will first prove the LHS part and then will compare it with the RHS part.
LHS
=1+sinAcosA
Multiply and divide by 2 in both the trigonometric ratios, we will get,
=1+sin2(2A)cos2(2A)
We know that, cos2A=cos2A−sin2A and so applying this identity, we will get,
=1+sin2(2A)cos2(2A)−sin2(2A)
We know this identity that, 1=cos2A+sin2A and so applying this, we will get,
=cos2(2A)+sin2(2A)+sin2(2A)cos2(2A)−sin2(2A)
We know that, sin2A=2sinAcosA and so applying this, we will get,
=cos2(2A)+sin2(2A)+2sin(2A)cos(2A)cos2(2A)−sin2(2A)
We also know this formula, a2−b2=(a−b)(a+b) and here, we have rearrange the denominator, we will get,
=cos2(2A)+2sin(2A)cos(2A)+sin2(2A)[cos(2A)−sin(2A)][cos(2A)+sin(2A)]
We will use this formula, a2+2ab+b2=(a+b)2 and so applying this, we will get,
=[cos(2A)+sin(2A)]2[cos(2A)−sin(2A)][cos(2A)+sin(2A)]
Opening the brackets of the denominator, we will get,
=[cos(2A)+sin(2A)][cos(2A)+sin(2A)][cos(2A)−sin(2A)][cos(2A)+sin(2A)]
=[cos(2A)+sin(2A)][cos(2A)−sin(2A)] ---------- (1)
Dividing both the numerator and denominator bycos(2A) , we will get,
=cos(2A)cos(2A)+cos(2A)sin(2A)cos(2A)cos(2A)−cos(2A)sin(2A)
We know that, tanA=cosAsinA , we will get,
=1+tan(2A)1−tan(2A)
We know the value of tan(4π)=1 and so applying this, we will get,
=1+tan(4π)tan(2A)tan(4π)−tan(2A)
We will use this identity tan(A−B)=1+tanAtanBtanA−tanB and using this, we will get,
=tan(4π−2A)
=RHS
Note : After solving the LHS part till equation (1), we can start solving the RHS part too…
RHS
=tan(4π−2A)
=1+tan(4π)tan(2A)tan(4π)−tan(2A)
=1+tan(2A)1−tan(2A)
=1+cos(2A)sin(2A)1−cos(2A)sin(2A)
=cos(2A)cos(2A)+sin(2A)cos(2A)cos(2A)−sin(2A)
=cos(2A)+sin(2A)cos(2A)−sin(2A)
= LHS till equation (1)
Thus, LHS = RHS.
Hence, it is proved 1+sinAcosA=tan(4π−2A) .