Solveeit Logo

Question

Question: Prove that \(\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A\)?...

Prove that cosA1+sinA+1+sinAcosA=2secA\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A?

Explanation

Solution

Hint : We have sum of two terms in the left-hand side of cosA1+sinA+1+sinAcosA=2secA\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A. We take the LCM of the denominators. Then we add them in the denominators. Then we use the identity of (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab to simplify the numerator and also use sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1.

Complete step-by-step answer :
We have the sum of two terms in cosA1+sinA+1+sinAcosA\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}. We take the LCM of the denominators as the multiplications of those terms.
The equation becomes
cosA1+sinA+1+sinAcosA=cos2A+(1+sinA)2cosA(1+sinA)\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\left( 1+\sin A \right)}^{2}}}{\cos A\left( 1+\sin A \right)}.
We break the square as
(a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. So, (1+sinA)2=1+sin2A+2sinA{{\left( 1+\sin A \right)}^{2}}=1+{{\sin }^{2}}A+2\sin A.
The equation becomes
cosA1+sinA+1+sinAcosA=cos2A+(1+sinA)2cosA(1+sinA)=cos2A+1+sin2A+2sinAcosA(1+sinA)\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\left( 1+\sin A \right)}^{2}}}{\cos A\left( 1+\sin A \right)}=\dfrac{{{\cos }^{2}}A+1+{{\sin }^{2}}A+2\sin A}{\cos A\left( 1+\sin A \right)}.
We know that
sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. We get cosA1+sinA+1+sinAcosA=2+2sinAcosA(1+sinA)\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2+2\sin A}{\cos A\left( 1+\sin A \right)}.
We take 2 common from the numerator to get
cosA1+sinA+1+sinAcosA=2(1+sinA)cosA(1+sinA)\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\cos A\left( 1+\sin A \right)}.
We omit the common from both numerator and denominator and get
cosA1+sinA+1+sinAcosA=2(1+sinA)cosA(1+sinA)=2cosA\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\cos A\left( 1+\sin A \right)}=\dfrac{2}{\cos A}.
We use the inverse formula to get
1cosx=secx\dfrac{1}{\cos x}=\sec x. So, cosA1+sinA+1+sinAcosA=2cosA=2secA\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2}{\cos A}=2\sec A.
Thus verified cosA1+sinA+1+sinAcosA=2secA\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A.

Note : It is important to remember that the condition to eliminate the (1+sinA)\left( 1+\sin A \right) from both denominator and numerator is (1+sinA)0\left( 1+\sin A \right)\ne 0. No domain is given for the variable AA. The value of sinA1\sin A\ne -1 is essential. The simplified condition will be A(4n1)π2,nZA\ne \dfrac{\left( 4n-1 \right)\pi }{2},n\in \mathbb{Z}.