Solveeit Logo

Question

Question: Prove that: \(\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }=\tan 37{}^\ci...

Prove that: cos8sin8cos8+sin8=tan37\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }=\tan 37{}^\circ

Explanation

Solution

Hint: We will first start by dividing the numerator and denominator by cos8\cos 8{}^\circ . Then, we will use the trigonometric identity that tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} to prove the given result.

Complete step-by-step answer:
Now, we have to prove that cos8sin8cos8+sin8=tan37\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }=\tan 37{}^\circ .
Now, we will take LHS given to us as,
cos8sin8cos8+sin8\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }
Now, we divide the both numerator and denominator with cos8\cos 8{}^\circ . So, we have,
cos8sin8cos8cos8+sin8cos8\Rightarrow \dfrac{\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ }}{\dfrac{\cos 8{}^\circ +\sin 8{}^\circ }{\cos 8{}^\circ }}
Now, we know that sinAcosA=tanA\dfrac{\sin A}{\cos A}=\tan A
1tan81+tan8\Rightarrow \dfrac{1-\tan 8{}^\circ }{1+\tan 8{}^\circ }
Now, we know that 1=tan451=\tan 45{}^\circ
tan45tan81+tan45×tan8\Rightarrow \dfrac{\tan 45{}^\circ -\tan 8{}^\circ }{1+\tan 45{}^\circ \times \tan 8{}^\circ }
Now, we know that tanAtanB1+tanAtanB=tan(AB)\dfrac{\tan A-\tan B}{1+\tan A\tan B}=\tan \left( A-B \right)
tan(458) =tan37 \begin{aligned} & \Rightarrow \tan \left( 45{}^\circ -8{}^\circ \right) \\\ & =\tan 37{}^\circ \\\ \end{aligned}
Since, we have LHS = RHS.
Hence Proved.

Note: It is important to note that how we have used the fact that tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} to convert the expression 1tan81+tan8\dfrac{1-\tan 8{}^\circ }{1+\tan 8{}^\circ } to tan45tan81+tan45×tan8\dfrac{\tan 45{}^\circ -\tan 8{}^\circ }{1+\tan 45{}^\circ \times \tan 8{}^\circ }. Also, in this conversion we have deliberately left the 1 in denominator unchanged. So, that the formula can be applied successfully.