Solveeit Logo

Question

Question: Prove that \[\dfrac{{\cos 8^\circ - \sin 8^\circ }}{{\cos 8^\circ + \sin 8^\circ }} = \tan 37^\circ ...

Prove that cos8sin8cos8+sin8=tan37\dfrac{{\cos 8^\circ - \sin 8^\circ }}{{\cos 8^\circ + \sin 8^\circ }} = \tan 37^\circ

Explanation

Solution

Here, we are required to prove the given equation. Thus, we will divide the left hand side of the equation by cos8\cos 8^\circ and simplify it further to get the equation in form of tangent function. Then using the suitable trigonometric identity we will simplify the equation further so that the expression on the left hand side of the given equation is equal to the right hand side.

Formula Used:
We will use the following formulas:

  1. tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
  2. tanatanb1+tanatanb=tan(ab)\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} = \tan \left( {a - b} \right)

Complete step by step solution:
We will first consider the left hand side of the given equation.
LHS =cos8sin8cos8+sin8 = \dfrac{{\cos 8^\circ - \sin 8^\circ }}{{\cos 8^\circ + \sin 8^\circ }}
Now, dividing both the numerator as well as denominator by cos8\cos 8^\circ , we get,
\Rightarrow LHS =cos8cos8sin8cos8cos8cos8+sin8cos8 = \dfrac{{\dfrac{{\cos 8^\circ }}{{\cos 8^\circ }} - \dfrac{{\sin 8^\circ }}{{\cos 8^\circ }}}}{{\dfrac{{\cos 8^\circ }}{{\cos 8^\circ }} + \dfrac{{\sin 8^\circ }}{{\cos 8^\circ }}}}
Now using the formula tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, we get
\Rightarrow LHS =1tan81+tan8 = \dfrac{{1 - \tan 8^\circ }}{{1 + \tan 8^\circ }}
Now, we know that tan45=1\tan 45^\circ = 1
Using this we can write above equation as:
\Rightarrow LHS =tan45tan81+tan45tan8 = \dfrac{{\tan 45^\circ - \tan 8^\circ }}{{1 + \tan 45^\circ \tan 8^\circ }}
Here, using the formula, tanatanb1+tanatanb=tan(ab)\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} = \tan \left( {a - b} \right), we get,
\Rightarrow LHS =tan45tan81+tan45tan8=tan(458) = \dfrac{{\tan 45^\circ - \tan 8^\circ }}{{1 + \tan 45^\circ \tan 8^\circ }} = \tan \left( {45^\circ - 8^\circ } \right)
\Rightarrow LHS =tan37== \tan 37^\circ = RHS
Hence,
LHS == RHS
cos8sin8cos8+sin8=tan37\dfrac{{\cos 8^\circ - \sin 8^\circ }}{{\cos 8^\circ + \sin 8^\circ }} = \tan 37^\circ
Hence, proved

Additional Information:
Trigonometry is a branch of mathematics which helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life.

Note:
An alternate way to solve this question is:
We have,
LHS =cos8sin8cos8+sin8 = \dfrac{{\cos 8^\circ - \sin 8^\circ }}{{\cos 8^\circ + \sin 8^\circ }}
Rewriting this expression, we get
\Rightarrow LHS =cos(9082)sin8cos(9082)+sin8 = \dfrac{{\cos \left( {90^\circ - 82^\circ } \right) - \sin 8^\circ }}{{\cos \left( {90^\circ - 82^\circ } \right) + \sin 8^\circ }}
Hence, using the formula, cos(90θ)=sinθ\cos \left( {90^\circ - \theta } \right) = \sin \theta , we get,
\Rightarrow LHS =sin82sin8sin82+sin8 = \dfrac{{\sin 82^\circ - \sin 8^\circ }}{{\sin 82^\circ + \sin 8^\circ }}
Using the formulas, sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) and sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) in the numerator and the denominator respectively, we get,
\Rightarrow LHS =2cos(82+82)sin(8282)2sin(82+82)cos(8282) = \dfrac{{2\cos \left( {\dfrac{{82^\circ + 8^\circ }}{2}} \right)\sin \left( {\dfrac{{82^\circ - 8^\circ }}{2}} \right)}}{{2\sin \left( {\dfrac{{82^\circ + 8^\circ }}{2}} \right)\cos \left( {\dfrac{{82^\circ - 8^\circ }}{2}} \right)}}
Simplifying the expression, we get
\Rightarrow LHS=2cos45sin372sin45cos37 = \dfrac{{2\cos 45^\circ \sin 37^\circ }}{{2\sin 45^\circ \cos 37^\circ }}
Substituting sin45=cos45=12\sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }} in the above equation, we get
\Rightarrow LHS =2(12)sin372(12)cos37 = \dfrac{{2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\sin 37^\circ }}{{2\left( {\dfrac{1}{{\sqrt 2 }}} \right)\cos 37^\circ }}
Cancelling out the same terms from the numerator and denominator, we get,
\Rightarrow LHS =sin37cos37 = \dfrac{{\sin 37^\circ }}{{\cos 37^\circ }}
Now using the tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, we get
\Rightarrow LHS =sin37cos37=tan37== \dfrac{{\sin 37^\circ }}{{\cos 37^\circ }} = \tan 37^\circ = RHS
Therefore,

cos8sin8cos8+sin8=tan37\dfrac{{\cos 8^\circ - \sin 8^\circ }}{{\cos 8^\circ + \sin 8^\circ }} = \tan 37^\circ
Hence, proved.