Question
Question: Prove that \(\dfrac{{{a^2}\sin (B - C)}}{{\sin B + \sin C}} + \dfrac{{{b^2}\sin (C - A)}}{{\sin C + ...
Prove that sinB+sinCa2sin(B−C)+sinC+sinAb2sin(C−A)+sinA+sinBc2sin(A−B)=0
Solution
Here in this question properties of triangle in trigonometric functions will get used. Radius of circumscribed circle also called as derivation of sine rule is given by: -R=2sinAa=2sinBb=2sinCc
a=R2sinA, b=R2sinB,c=R2sinC
Complete step-by-step answer:
L.H.S=sinB+sinCa2sin(B−C)+sinC+sinAb2sin(C−A)+sinA+sinBc2sin(A−B)
First of all we will simplify the numerator by putting values of a, b, and c from the formula of derivation of sine rule.
a=R2sinA, b=R2sinB,c=R2sinC ⇒sinB+sinC(R2sinA)2sin(B−C)+sinC+sinA(R2sinB)2sin(C−A)+sinA+sinB(R2sinC)2sin(A−B)
Now we will solve the square terms in the bracket to simplify further.
⇒sinB+sinC(R24sin2A)sin(B−C)+sinC+sinA(R24sin2B)sin(C−A)+sinA+sinB(R24sin2C)sin(A−B)
Now we will apply property of triangle in trigonometric functions i.e. sinA=sin(π−(B+C)) \Rightarrow \dfrac{{({R^2}4\sin A)\sin A\sin (B - C)}}{{\sin B + \sin C}} + \dfrac{{({R^2}4{{\sin }^2}B)\sin (C - A)}}{{\sin C + \sin A}} + \dfrac{{({R^2}4{{\sin }^2}C)\sin (A - B)}}{{\sin A + \sin B}}$$$$ \Rightarrow \dfrac{{({R^2}4\sin A)\sin (\pi - (B + C)\sin (B - C)}}{{\sin B + \sin C}} + \dfrac{{({R^2}4{{\sin }^2}B)\sin (C - A)}}{{\sin C + \sin A}} + \dfrac{{({R^2}4{{\sin }^2}C)\sin (A - B)}}{{\sin A + \sin B}}
As we know sine in second quadrant is positive so we can write \sin (\pi - (B + C)) = \sin (B + C)$$$ \Rightarrow \dfrac{{({R^2}4\sin A)\sin (B + C)\sin (B - C)}}{{\sin B + \sin C}} + \dfrac{{({R^2}4{{\sin }^2}B)\sin (C - A)}}{{\sin C + \sin A}} + \dfrac{{({R^2}4{{\sin }^2}C)\sin (A - B)}}{{\sin A + \sin B}}$$
Now we will apply identity \sin (x + y)\sin (x - y) = {\sin ^2}x - {\sin ^2}y $$ \Rightarrow \dfrac{{({R^2}4\sin A)({{\sin }^2}B - {{\sin }^2}C)}}{{\sin B + \sin C}} + \dfrac{{({R^2}4{{\sin }^2}B)\sin (C - A)}}{{\sin C + \sin A}} + \dfrac{{({R^2}4{{\sin }^2}C)\sin (A - B)}}{{\sin A + \sin B}}$$
Now we will apply algebraic identity i.e.{a^2} - {b^2} = (a - b)(a + b)$$$ \Rightarrow \dfrac{{({R^2}4\sin A)(\sin B - \sin C)(\sin B + \sin C)}}{{\sin B + \sin C}} + \dfrac{{({R^2}4{{\sin }^2}B)\sin (C - A)}}{{\sin C + \sin A}} + \dfrac{{({R^2}4{{\sin }^2}C)\sin (A - B)}}{{\sin A + \sin B}}Nowcancellingaliketermfromnumeratoranddenominatorwewillget \Rightarrow ({R^2}4\sin A)(\sin B - \sin C) + \dfrac{{({R^2}4{{\sin }^2}B)\sin (C - A)}}{{\sin C + \sin A}} + \dfrac{{({R^2}4{{\sin }^2}C)\sin (A - B)}}{{\sin A + \sin B}}Similarlyothertwopartsoftheequationcanalsobesimplifiedbyusingtheseidentitieswehaveusedabovewhichwillresultinthreesimilarformsofterms. \Rightarrow ({R^2}4\sin A)(\sin B - \sin C) + ({R^2}4\sin B)(\sin C - \sin A) + ({R^2}4\sin C)(\sin A - \sin B)Nowwewilltake{R^2}4commonfromwholeequation. \Rightarrow {R^2}4[(\sin A)(\sin B - \sin C) + (\sin B)(\sin C - \sin A) + (\sin C)(\sin A - \sin B)]Nowwewillmultiplythebrackettermssothatwecanfurthersolveandsimplifytheequation. \Rightarrow {R^2}4[(\sin A\sin B - \sin A\sin C) + (\sin B\sin C - \sin B\sin A) + (\sin C\sin A - \sin C\sin B)]Nowwewillcancelalikeandoppositeinsigntermsfromtheaboveequation. \Rightarrow {R^2}4[0] \Rightarrow 0$$
Hence it is proved that sinB+sinCa2sin(B−C)+sinC+sinAb2sin(C−A)+sinA+sinBc2sin(A−B)=0
Note: Students may likely make mistakes while applying so many identities at the same time so they must remember all important identities very cautiously. Also relating algebraic identities with trigonometric functions can sometimes become a little confusing but students should not get confused. The only thing which should be remembered is only taking care of degrees.