Solveeit Logo

Question

Question: Prove that \[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan ...

Prove that 1+tan2θ1+cot2θ=(1tanθ1cotθ)2=tan2θ\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta .

Explanation

Solution

Here we are given to prove two different equalities altogether. We will take them one by one and then try to solve them. Using normal trigonometric formulas will help us to solve this problem like ,1+tan2A=sec2A1 + {\tan ^2}A = {\sec ^2}A, 1+cot2A=cosec2A1 + co{t^2}A = cose{c^2}A, and tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} .

Complete step-by-step answer:
Here we have,
1+tan2θ1+cot2θ=(1tanθ1cotθ)2=tan2θ\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta
We start with,
(i) 1+tan2θ1+cot2θ=tan2θ\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\tan ^2}\theta
L.H.S
1+tan2θ1+cot2θ\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }}
We now, have,
1+tan2A=sec2A1 + ta{n^2}A = se{c^2}A
1+cot2A=cosec2A1 + co{t^2}A = cose{c^2}A
On substituting the above values we get,
=sec2θcosec2θ= \dfrac{{se{c^2}\theta }}{{cose{c^2}\theta }}
Again,
sec2θ=1cos2θse{c^2}\theta = \dfrac{1}{{co{s^2}\theta }}
cosec2θ=1sin2θcose{c^2}\theta = \dfrac{1}{{si{n^2}\theta }}
So, again, if we continue,
=1cos2θ1sin2θ= \dfrac{{\dfrac{1}{{co{s^2}\theta }}}}{{\dfrac{1}{{si{n^2}\theta }}}}
=sin2θcos2θ= \dfrac{{si{n^2}\theta }}{{co{s^2}\theta }}
=tan2θ= ta{n^2}\theta
For the 2nd part,

(ii) we need to prove,
(1tanθ1cotθ)2=tan2θ{\left( {\dfrac{{1 - tan\theta }}{{1 - cot\theta }}} \right)^2} = ta{n^2}\theta
L.H.S
(1tanθ1cotθ)2{\left( {\dfrac{{1 - tan\theta }}{{1 - cot\theta }}} \right)^2}
As, tanθ=sinθcosθ=1cotθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cot \theta }}
=(1sinθcosθ1cosθsinθ)2= {\left( {\dfrac{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}}} \right)^2}
On Simplifying, we get,
=(cosθsinθcosθsinθcosθsinθ)2= {\left( {\dfrac{{\dfrac{{cos\theta - sin\theta }}{{\cos \theta }}}}{{\dfrac{{sin\theta - cos\theta }}{{\sin \theta }}}}} \right)^2}
By cancelling out common terms we get,
=(1cosθ1sinθ)2= {\left( {\dfrac{{\dfrac{1}{{\cos \theta }}}}{{\dfrac{{ - 1}}{{\sin \theta }}}}} \right)^2}
=(sinθcosθ)2= {\left( {\dfrac{{ - \sin \theta }}{{\cos \theta }}} \right)^2}
As tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, we get,
=(tanθ)2= {( - \tan \theta )^2}
On squaring we get,
=tan2θ= {\tan ^2}\theta
=RHS
Hence, from (i) and (ii), we get 1+tan2θ1+cot2θ=(1tanθ1cotθ)2=tan2θ\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta

Note: Some basic trigonometric functions had been used here in this problem. We had used 1+tan2A=sec2A1 + ta{n^2}A = se{c^2}Aand 1+cot2A=cosec2A1 + co{t^2}A = cose{c^2}A. Also we had deal with tanθ=sinθcosθ=1cotθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cot \theta }}to simplify our problem and get our desired result.
One should remember all basic trigonometric properties and use them to simplify the problems.