Solveeit Logo

Question

Question: Prove that \(\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A\) ....

Prove that 1+sin2A+cos2A1+sin2Acos2A=cotA\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A .

Explanation

Solution

- Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use trigonometric formulas like sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , cos2θ+1=2cos2θ\cos 2\theta +1=2{{\cos }^{2}}\theta and 1cos2θ=2sin2θ1-\cos 2\theta =2{{\sin }^{2}}\theta for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Complete step-by-step solution -

Given:
We have to prove the following trigonometric equation:
1+sin2A+cos2A1+sin2Acos2A=cotA\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following four formulas:
sin2θ=2sinθcosθ.................(1) cos2θ+1=2cos2θ.................(2) 1cos2θ=2sin2θ...................(3) cosθsinθ=cotθ............................(4) \begin{aligned} & \sin 2\theta =2\sin \theta \cos \theta .................\left( 1 \right) \\\ & \cos 2\theta +1=2{{\cos }^{2}}\theta .................\left( 2 \right) \\\ & 1-\cos 2\theta =2{{\sin }^{2}}\theta ...................\left( 3 \right) \\\ & \dfrac{\cos \theta }{\sin \theta }=\cot \theta ............................\left( 4 \right) \\\ \end{aligned}
Now, we will use the above four formulas to simplify the term on the left-hand side.
On the left-hand side, we have 1+sin2A+cos2A1+sin2Acos2A\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A} .
Now, we will use the formula from the equation (1) to write sin2A=2sinAcosA\sin 2A=2\sin A\cos A in the numerator and denominator of the term 1+sin2A+cos2A1+sin2Acos2A\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A} . Then,
1+sin2A+cos2A1+sin2Acos2A 1+sin2A+cos2A1+sin2Acos2A=2sinAcosA+1+cos2A2sinAcosA+1cos2A \begin{aligned} & \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A} \\\ & \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+1+\cos 2A}{2\sin A\cos A+1-\cos 2A} \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write 1+cos2A=2cos2A1+\cos 2A=2{{\cos }^{2}}A and formula from the equation (3) to write 1cos2A=2sin2A1-\cos 2A=2{{\sin }^{2}}A in the above equation. Then,
1+sin2A+cos2A1+sin2Acos2A=2sinAcosA+1+cos2A2sinAcosA+1cos2A 1+sin2A+cos2A1+sin2Acos2A=2sinAcosA+2cos2A2sinAcosA+2sin2A \begin{aligned} & \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+1+\cos 2A}{2\sin A\cos A+1-\cos 2A} \\\ & \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} \\\ \end{aligned}
Now, we will take 2cosA2\cos A common from the numerator, and 2sinA2\sin A common from the denominator of the term 2sinAcosA+2cos2A2sinAcosA+2sin2A\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} in the above equation. Then,
1+sin2A+cos2A1+sin2Acos2A=2sinAcosA+2cos2A2sinAcosA+2sin2A 1+sin2A+cos2A1+sin2Acos2A=2cosA(sinA+cosA)2sinA(cosA+sinA) 1+sin2A+cos2A1+sin2Acos2A=cosA(sinA+cosA)sinA(sinA+cosA) 1+sin2A+cos2A1+sin2Acos2A=cosAsinA \begin{aligned} & \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\sin A\cos A+2{{\cos }^{2}}A}{2\sin A\cos A+2{{\sin }^{2}}A} \\\ & \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{2\cos A\left( \sin A+\cos A \right)}{2\sin A\left( \cos A+\sin A \right)} \\\ & \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A\left( \sin A+\cos A \right)}{\sin A\left( \sin A+\cos A \right)} \\\ & \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A}{\sin A} \\\ \end{aligned}
Now, we will use the formula from the equation (4) to write cosAsinA=cotA\dfrac{\cos A}{\sin A}=\cot A in the above equation. Then,
1+sin2A+cos2A1+sin2Acos2A=cosAsinA 1+sin2A+cos2A1+sin2Acos2A=cotA \begin{aligned} & \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\dfrac{\cos A}{\sin A} \\\ & \Rightarrow \dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A \\\ \end{aligned}
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, 1+sin2A+cos2A1+sin2Acos2A=cotA\dfrac{1+\sin 2A+\cos 2A}{1+\sin 2A-\cos 2A}=\cot A .
Hence, proved.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to prove the desired result. After that, we should apply double angle trigonometric formulas of sin2θ\sin 2\theta and cos2θ\cos 2\theta correctly. Moreover, while simplifying we should be aware of the result and try to solve accurately without any calculation mistakes, so that we can prove the desired result easily.