Solveeit Logo

Question

Question: Prove that \(\dfrac{{1 + \sin 2A + \cos 2A}}{{1 + \sin 2A - \cos 2A}} = \cot A\)....

Prove that 1+sin2A+cos2A1+sin2Acos2A=cotA\dfrac{{1 + \sin 2A + \cos 2A}}{{1 + \sin 2A - \cos 2A}} = \cot A.

Explanation

Solution

In this question we solve the left side of the equation and equating to the right side by using basic trigonometric formulas and identities such as cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x. We use the basic trigonometric identities such as sin2x=2sinxcosx\sin 2x = 2\sin x\cos x ,cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1 and cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x.

Complete step by step answer:
We have 1+sin2A+cos2A1+sin2Acos2A=cotA\dfrac{{1 + \sin 2A + \cos 2A}}{{1 + \sin 2A - \cos 2A}} = \cot A.
Taking Left side of the equation
1+sin2A+cos2A1+sin2Acos2A\dfrac{{1 + \sin 2A + \cos 2A}}{{1 + \sin 2A - \cos 2A}}
We can write sin2A=2sinAcosA\sin 2A = 2\sin A\cos A and cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1 in numerator and in denominator cos2A\cos 2A to be written as cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A. We get,
1+2sinAcosA+2cos2A11+2sinAcosA(12sin2A)\Rightarrow \dfrac{{1 + 2\sin A\cos A + 2{{\cos }^2}A - 1}}{{1 + 2\sin A\cos A - (1 - 2{{\sin }^2}A)}}

Simplifying the denominator of the given equation. We get,
1+2sinAcosA+2cos2A11+2sinAcosA1+2sin2A\Rightarrow \dfrac{{1 + 2\sin A\cos A + 2{{\cos }^2}A - 1}}{{1 + 2\sin A\cos A - 1 + 2{{\sin }^2}A}}
Cancelling out 11 from both the numerator and denominator. We get,
2sinAcosA+2cos2A2sinAcosA+2sin2A\Rightarrow \dfrac{{2\sin A\cos A + 2{{\cos }^2}A}}{{2\sin A\cos A + 2{{\sin }^2}A}}
Taking 22 as common from both the numerator and denominator. We get,
2(sinAcosA+cos2A)2(sinAcosA+sin2A)\Rightarrow \dfrac{{2(\sin A\cos A + {{\cos }^2}A)}}{{2(\sin A\cos A + {{\sin }^2}A)}}
Cancelling out 22. We get,
sinAcosA+cos2AsinAcosA+sin2A\Rightarrow \dfrac{{\sin A\cos A + {{\cos }^2}A}}{{\sin A\cos A + {{\sin }^2}A}}

Taking common cosA\cos A from the equation in numerator and sinA\sin A from the equation in the denominator. We get,
cosA(sinA+cosA)sinA(cosA+sinA)\Rightarrow \dfrac{{\cos A(\sin A + \cos A)}}{{\sin A(\cos A + \sin A)}}
Cancelling out the equal values in the above equation. We get,
cosAsinA\Rightarrow \dfrac{{\cos A}}{{\sin A}}
We know that cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A
So, 1+sin2A+cos2A1+sin2Acos2A=cotA\dfrac{{1 + \sin 2A + \cos 2A}}{{1 + \sin 2A - \cos 2A}} = \cot A
Hence, the left side of the equation is equal to the right side of the equation.
Hence, proved.

Note: We use the trigonometric identities to substitute the term in the equation according to the result we need as we have use two trigonometric identities for cos2A\cos 2A as cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1 and cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A as we want cot2A\cot 2A as a result and cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A. So, we have to use both identities. If we use only one we can’t get the result.