Solveeit Logo

Question

Question: Prove that \[\dfrac{1}{{\sec {\text{A}} - \tan {\text{A}}}} - \dfrac{1}{{\cos {\text{A}}}} = \dfrac{...

Prove that 1secAtanA1cosA=1cosA1secA + tanA\dfrac{1}{{\sec {\text{A}} - \tan {\text{A}}}} - \dfrac{1}{{\cos {\text{A}}}} = \dfrac{1}{{\cos {\text{A}}}} - \dfrac{1}{{\sec {\text{A + tanA}}}}

Explanation

Solution

Here in the above given problem we are given 1secAtanA1cosA=1cosA1secA + tanA\dfrac{1}{{\sec {\text{A}} - \tan {\text{A}}}} - \dfrac{1}{{\cos {\text{A}}}} = \dfrac{1}{{\cos {\text{A}}}} - \dfrac{1}{{\sec {\text{A + tanA}}}} and by the use of some basic formula and identity like[(a+b)(ab)=a2b2][(a + b)(a - b) = {a^2} - {b^2}], and sec2Atan2A=1{\sec ^2}{\text{A}} - {\tan ^2}{\text{A}} = 1we will prove that Left Hand Side is equal to Right Hand Side. Lastly by cancelling the common terms we get desired results.

Formula used:
In the above question we have used the rationalization and elimination method, and rules that [(a+b)(ab)=a2b2][(a + b)(a - b) = {a^2} - {b^2}]and sec2Atan2A=1{\sec ^2}{\text{A}} - {\tan ^2}{\text{A}} = 1to get the desired result.

Complete step-by-step answer:
As asked we need to prove 1secAtanA1cosA=1cosA1secA + tanA\dfrac{1}{{\sec {\text{A}} - \tan {\text{A}}}} - \dfrac{1}{{\cos {\text{A}}}} = \dfrac{1}{{\cos {\text{A}}}} - \dfrac{1}{{\sec {\text{A + tanA}}}}
So firstly we will begin with Left Hand side where LHS=1secAtanA1cosALHS = \dfrac{1}{{\sec {\text{A}} - \tan {\text{A}}}} - \dfrac{1}{{\cos {\text{A}}}}
Now here through rationalization and by multiplying and dividing the numerator and denominator by secA + tan A\sec {\text{A + tan A}}and further simplification we obtain equation as

secA + tanA(secA + tanA)(secA - tanA)1cosA secA + tanA - secA  \Rightarrow \dfrac{{\sec {\text{A + tanA}}}}{{(\sec {\text{A + tanA)(secA - tanA)}}}} - \dfrac{1}{{\cos {\text{A}}}} \\\ \Rightarrow \sec {\text{A + tanA - secA}} \\\

As we know that sec2Atan2A=1{\sec ^2}{\text{A}} - {\tan ^2}{\text{A}} = 1
So lastly we get tanA\tan {\text{A}}
Now by adding and subtracting secA\sec {\text{A}}we get

secA + tanA - secA =1cosA(secA - tanA)  \Rightarrow \sec {\text{A + tanA - secA}} \\\ \Rightarrow = \dfrac{1}{{\cos {\text{A}}}} - (\sec {\text{A - tanA)}} \\\

Later on by multiplying and dividing (secA - tanA)(\sec {\text{A - tanA)}}by (secA + tanA)(\sec {\text{A + tanA)}}and further simplification by cancelling out the lie terms we get the following equation

1cosA(sec2A - tan2A)(secA + tanA) 1cosA1secA + tanA  \Rightarrow \dfrac{1}{{\cos {\text{A}}}} - \dfrac{{({{\sec }^2}{\text{A - ta}}{{\text{n}}^2}{\text{A)}}}}{{(\sec {\text{A + tanA)}}}} \\\ \Rightarrow \dfrac{1}{{\cos {\text{A}}}} - \dfrac{1}{{\sec {\text{A + tanA}}}} \\\

As we can see that on LHS we have 1cosA1secA + tanA\dfrac{1}{{\cos {\text{A}}}} - \dfrac{1}{{\sec {\text{A + tanA}}}} and on RHS also we have1cosA1secA + tanA\dfrac{1}{{\cos {\text{A}}}} - \dfrac{1}{{\sec {\text{A + tanA}}}}which means left hand side is equal to Right Hand Side.
Hence the above given question is proved.

Note: Keep in mind that when we solve questions like this we use the most important identity that is [(a+b)(ab)=a2b2][(a + b)(a - b) = {a^2} - {b^2}]and the trigonometric identity sec2Atan2A=1{\sec ^2}{\text{A}} - {\tan ^2}{\text{A}} = 1.Remember that while simplifying such questions we need to very careful because if we get missed in the initial stage we will get wrong solution. We only need to remember the basic formula of trigonometric for understanding such questions and solving it with ease.