Solveeit Logo

Question

Question: Prove that, \[\dfrac{1}{\sec A+\tan A}-\dfrac{1}{\cos A}=\dfrac{1}{\cos A}-\dfrac{1}{\sec A-\tan A}\...

Prove that, 1secA+tanA1cosA=1cosA1secAtanA\dfrac{1}{\sec A+\tan A}-\dfrac{1}{\cos A}=\dfrac{1}{\cos A}-\dfrac{1}{\sec A-\tan A}

Explanation

Solution

Hint: We can solve this question by using trigonometric identity sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1.

Complete step-by-step answer:
Given expression is 1secA+tanA1cosA=1cosA1secAtanA\dfrac{1}{\sec A+\tan A}-\dfrac{1}{\cos A}=\dfrac{1}{\cos A}-\dfrac{1}{\sec A-\tan A}
On taking L.H.S
1secA+tanA1cosA\dfrac{1}{\sec A+\tan A}-\dfrac{1}{\cos A}
We can multiply numerator and denominator by secAtanA\sec A-\tan A in first term
1secA+tanA×secAtanA(secAtanA)secA\Rightarrow \dfrac{1}{\sec A+\tan A}\times \dfrac{\sec A-\tan A}{(\sec A-\tan A)}-\sec A \left\\{ \because \dfrac{1}{\cos A}=\sec A \right\\}
secAtanA(sec2Atan2A)secA\Rightarrow \dfrac{\sec A-\tan A}{({{\sec }^{2}}A-{{\tan }^{2}}A)}-\sec A
secAtanA1secA\Rightarrow \dfrac{\sec A-\tan A}{1}-\sec A \left\\{ \because {{\sec }^{2}}A-{{\tan }^{2}}A=1 \right\\}
secAtanAsecA\Rightarrow \sec A-\tan A-\sec A
tanA\Rightarrow -\tan A

On taking R.H.S
1cosA1secAtanA\dfrac{1}{\cos A}-\dfrac{1}{\sec A-\tan A}
We can multiply numerator and denominator by secA+tanA\sec A+\tan A in second term
secA1secAtanA×secA+tanA(secA+tanA)\Rightarrow \sec A-\dfrac{1}{\sec A-\tan A}\times \dfrac{\sec A+\tan A}{(\sec A+\tan A)} \left\\{ \because \dfrac{1}{\cos A}=\sec A \right\\}
secA(secA+tanA)(sec2Atan2A)\Rightarrow \sec A-\dfrac{(\sec A+\tan A)}{({{\sec }^{2}}A-{{\tan }^{2}}A)}
secAsecAtanA\Rightarrow \sec A-\sec A-\tan A \left\\{ \because {{\sec }^{2}}A-{{\tan }^{2}}A=1 \right\\}
tanA\Rightarrow -\tan A
On simplifying L.H.S equal to R.H.S.

Note: We can also do this question by converting expression in terms of sinA and cosA.
As we have tanA=sinAcosA,secA=1cosA\tan A=\dfrac{\sin A}{\cos A},\sec A=\dfrac{1}{\cos A}