Question
Question: Prove that, \[\dfrac{1}{\sec A+\tan A}-\dfrac{1}{\cos A}=\dfrac{1}{\cos A}-\dfrac{1}{\sec A-\tan A}\...
Prove that, secA+tanA1−cosA1=cosA1−secA−tanA1
Solution
Hint: We can solve this question by using trigonometric identity sec2A−tan2A=1.
Complete step-by-step answer:
Given expression is secA+tanA1−cosA1=cosA1−secA−tanA1
On taking L.H.S
secA+tanA1−cosA1
We can multiply numerator and denominator by secA−tanA in first term
⇒secA+tanA1×(secA−tanA)secA−tanA−secA \left\\{ \because \dfrac{1}{\cos A}=\sec A \right\\}
⇒(sec2A−tan2A)secA−tanA−secA
⇒1secA−tanA−secA \left\\{ \because {{\sec }^{2}}A-{{\tan }^{2}}A=1 \right\\}
⇒secA−tanA−secA
⇒−tanA
On taking R.H.S
cosA1−secA−tanA1
We can multiply numerator and denominator by secA+tanA in second term
⇒secA−secA−tanA1×(secA+tanA)secA+tanA \left\\{ \because \dfrac{1}{\cos A}=\sec A \right\\}
⇒secA−(sec2A−tan2A)(secA+tanA)
⇒secA−secA−tanA \left\\{ \because {{\sec }^{2}}A-{{\tan }^{2}}A=1 \right\\}
⇒−tanA
On simplifying L.H.S equal to R.H.S.
Note: We can also do this question by converting expression in terms of sinA and cosA.
As we have tanA=cosAsinA,secA=cosA1