Solveeit Logo

Question

Question: Prove that: \(\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}\)...

Prove that:
1+secAsecA=sin2A1cosA\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}

Explanation

Solution

- Hint: In this given question we can solve the question by converting secA\sec Ain the Left Hand Side (LHS) into 1cosA\dfrac{1}{\cos A}. Then using the identity sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1 in place of 1 we can prove that the Left Hand Side (LHS) is equal to the Right Hand Side (RHS).

Complete step-by-step solution -

In this question, we are asked to prove that the Left Hand Side (LHS) 1+secAsecA\dfrac{1+\sec A}{\sec A} is equal to the Right Hand Side (RHS) sin2A1cosA\dfrac{{{\sin }^{2}}A}{1-\cos A}, that is 1+secAsecA=sin2A1cosA\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}.
Let us start the proving from the LHS and arrive at the RHS.
LHS=1+secAsecA  \begin{aligned} & LHS=\dfrac{1+\sec A}{\sec A} \\\ & \\\ \end{aligned}
=1+1cosA1cosA=\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}} (as secA=1cosA\sec A=\dfrac{1}{\cos A})
=cosA+1cosA×cosA=\dfrac{\cos A+1}{\cos A}\times \cos A
=cosA+1.............(1.1)=\cos A+1.............(1.1)
Multiplying (1cosA)\left( 1-\cos A \right)to both the numerator and the denominator in equation (1.1), we obtain

LHS=(1+cosA)(1cosA)(1cosA)LHS=\dfrac{\left( 1+\cos A \right)\left( 1-\cos A \right)}{\left( 1-\cos A \right)}
=1cos2A1cosA................(1.2)=\dfrac{1-{{\cos }^{2}}A}{1-\cos A}................(1.2)
Now, we know that
sin2A+cos2A=1 1cos2A=sin2A................(1.3) \begin{aligned} & {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\\ & \Rightarrow 1-{{\cos }^{2}}A={{\sin }^{2}}A................(1.3) \\\ \end{aligned}
Putting the value of 1cos2A1-{{\cos }^{2}}A as obtained in equation (1.3) in equation (1.2), we get
LHS=1cos2A1cosA=sin2A1cosA=RHSLHS=\dfrac{1-{{\cos }^{2}}A}{1-\cos A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}=RHS
Therefore, we arrive at the required condition of equalized Left Hand Side (LHS) and Right Hand Side (RHS). That is
1+secAsecA=sin2A1cosA\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}.

Note: Note that in equation (1.1), we need to multiply and divide the expression by a term involving cosA\cos A so that the numerator and denominator become quadratic in cos term and therefore we can convert it in terms of sin terms by using equation (1.3).