Solveeit Logo

Question

Question: Prove that: \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{...

Prove that: 1cscAcotA1sinA=1sinA1cscA+cotA.\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.

Explanation

Solution

To prove this, we simplify the both sides separately by writing all trigonometric ratios in terms of sinA\sin A and cosA\cos A, then rationalize the term in the fraction which has complex denominator and solve to simplest form. We show that both sides give the same values.

  • cscA=1sinA;cotA=cosAsinA\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}

Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in 1cscAcotA1sinA\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} in terms of sinA\sin A and cosA\cos A.
1cscAcotA1sinA=11sinAcosAsinA1sinA\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}
Taking LCM in the denominator of the first fraction.
=11cosAsinA1sinA= \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}
=sinA1cosA1sinA= \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}
Now we rationalize the first fraction by multiplying both numerator and denominator by (1+cosθ)(1 + \cos \theta ).
=sinA1cosA×1+cosA1+cosA1sinA= \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}

                                     $$ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}$$   

Now we know from the property that (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}
Using the formula solve denominator of first fraction where a=1,b=cosAa = 1,b = \cos A
=sinA(1+cosA)(1cos2A)1sinA= \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}
Now from the property sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 we can write 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta
So, we substitute the value of 1cos2A=sin2A1 - {\cos ^2}A = {\sin ^2}A in the denominator of the first fraction.
=sinA(1+cosA)sin2A1sinA= \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}

Cancel out the same factors from numerator and denominator.

       $$ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}$$  

Taking LCM of both the fractions.

                                       $$  

= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\

$$ = \cot A$$ {since $$\cot A = \dfrac{{\cos A}}{{\sin A}}$$ } $$ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A$$ $...(1)$ Now we solve the RHS of the equation. Write all trigonometric ratios in $$\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}$$ in terms of $\sin A$ and $\cos A$. $$\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}$$ Take LCM in the denominator of the second fraction. $ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$ $ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$ Now we rationalize the second fraction by multiplying both numerator and denominator by $$(1 - \cos A)$$ $ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$ $ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$ Now we know from the property that $$(a + b)(a - b) = {a^2} - {b^2}$$ Using the formula solve denominator of second fraction where $$a = 1,b = \cos A$$ $ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$ Now from the property $${\sin ^2}\theta + {\cos ^2}\theta = 1$$ we can write $$1 - {\cos ^2}\theta = {\sin ^2}\theta $$ So, we substitute the value of $$1 - {\cos ^2}A = {\sin ^2}A$$ in the denominator of the second fraction. $ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$ Cancel out factors from the numerator and denominator of the second fraction. $ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$ Taking LCM of both fractions. $ = \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\\ = \dfrac{{\cos A}}{{\sin A}} \\\ $ $$ = \cot A$$ {since $$\cot A = \dfrac{{\cos A}}{{\sin A}}$$ } $$ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A$$ $...(2)$ Now we check if LHS is equal to RHS Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get $$\cot A = \cot A$$ LHS = RHS Hence, $$\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.$$ **Note:** Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy. Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.