Question
Question: Prove that : \(\dfrac{1}{{\cos ecA\, - \,\cot A}}\, - \,\dfrac{1}{{\sin A}}\,\, = \,\,\,\dfrac{1}{{\...
Prove that : cosecA−cotA1−sinA1=sinA1−cosecA+cotA1
Solution
We will use the basic trigonometric formulas to solve the question. This type of trigonometric proofs are solved by taking both sides that are Left hand side(LHS) and right hand side(RHS) one by one and simplifying both to obtain the same simplified solution.
Complete step-by-step answer:
We will start the proof by taking LHS and RHS, one by one and then simplifying them.
Firstly we will take Left hand side (LHS) as
LHS=cosecA−cotA1−sinA1
Now, we know that cosecθ=sinθ1 and cotθ=tanθ1=cosθsinθ1=sinθcosθ
So, we will simplify the whole equation in terms of sin and cos, putting the values as
=sinA1−sinAcosA1−sinA1
Now, simplifying the above equation as
=sinA(1−cosA)1−sinA1
=(1−cosA)sinA−sinA1
Now, we will cross multiply for further simplification,
=sinA(1−cosA)sin2A−(1−cosA)
Now, we have the trigonometric identity as sin2A+cos2A=1..................(i)
From the identity we will calculate the value of cos2A as 1−sin2A and substitute in above equation as
=sinA(1−cosA)(1−cos2A)−(1−cosA)
Now we have the identity as (a2−b2)=(a+b)(a−b).................(ii)
so we will use it for (1−cos2A)
=sinA(1−cosA)(1−cosA)(1+cosA)−(1−cosA)
Now taking (1−cosA) common from numerator
=sinA(1−cosA)(1−cosA)[1+cosA−1]
Now cancelling the term (1−cosA) from both numerator and denominator
=sinAcosA
=cotA
Now, similarly we will solve for right hand side as
RHS=sinA1−cosecA+cotA1
Simplifying in terms of sin and cos as
=sinA1−sinA1+sinAcosA1
=sinA1−sinA(1+cosA)1
=sinA1−(1+cosA)sinA
Again cross multiplying and solving as
=sinA(1+cosA)(1+cosA)−sin2A
Now again substituting value of sin2A by using the identity (i) as
=sinA(1+cosA)(1+cosA)−(1−cos2A)
Now using identity (ii) as
=sinA(1+cosA)(1+cosA)−(1−cosA)(1+cosA)
Taking (1+cosA) common and cancelling with the denominator we get
=sinA[1−1+cosA]
=sinAcosA
=cotA
=LHS
Thus from the above solution we can prove that LHS=RHS.
Note: The above proof can also be done by simplifying the equation in terms of cosec and cot. For this we will multiply the numerator and denominator by a common term (cosecA+cotA), which will not change the value of terms in LHS or RHS but will help to simplify the equation.
Try to simplify the problem using simple sin and cos functions, because they are the basic functions and a variety of identities are based on them, which will help in further simplifications. If you try to solve using cosec and cot then make sure you know all the identities related to them, otherwise the equation may become complex and hard to solve.