Solveeit Logo

Question

Question: Prove that: \(\dfrac{1}{1+{{x}^{b-a}}+{{x}^{c-a}}}+\dfrac{1}{1+{{x}^{a-b}}+{{x}^{c-b}}}+\dfrac{1}{1+...

Prove that: 11+xba+xca+11+xab+xcb+11+xbc+xac=1\dfrac{1}{1+{{x}^{b-a}}+{{x}^{c-a}}}+\dfrac{1}{1+{{x}^{a-b}}+{{x}^{c-b}}}+\dfrac{1}{1+{{x}^{b-c}}+{{x}^{a-c}}}=1 by using identity of exponents.

Explanation

Solution

Hint: Take terms one by one and use the identity of exponents which is xmn=xmxn{{x}^{m-n}}=\dfrac{{{x}^{m}}}{{{x}^{n}}} and simplify them and thus ass altogether to get desired results.

Complete step-by-step answer:

In the question we are given expression
11+xba+xca+11+xab+xcb+11+xbc+xac\dfrac{1}{1+{{x}^{b-a}}+{{x}^{c-a}}}+\dfrac{1}{1+{{x}^{a-b}}+{{x}^{c-b}}}+\dfrac{1}{1+{{x}^{b-c}}+{{x}^{a-c}}} and we have to prove that their value is 1.
So, let’s consider the expression which is
11+xba+xca+11+xab+xcb+11+xbc+xac\dfrac{1}{1+{{x}^{b-a}}+{{x}^{c-a}}}+\dfrac{1}{1+{{x}^{a-b}}+{{x}^{c-b}}}+\dfrac{1}{1+{{x}^{b-c}}+{{x}^{a-c}}}
In this expression at first consider 1st term which is
11+xba+xca\dfrac{1}{1+{{x}^{b-a}}+{{x}^{c-a}}}
In this we will use an identity of exponents which says that
xmxn=xmn\dfrac{{{x}^{m}}}{{{x}^{n}}}={{x}^{m-n}}
So we can write xba{{x}^{b-a}} as xbxa\dfrac{{{x}^{b}}}{{{x}^{a}}} and xca{{x}^{c-a}} as xcxa\dfrac{{{x}^{c}}}{{{x}^{a}}} so we can write 1st term as,
11+xbxa+xcxa\dfrac{1}{1+\dfrac{{{x}^{b}}}{{{x}^{a}}}+\dfrac{{{x}^{c}}}{{{x}^{a}}}}
Now, we will take L.C.M. we get, 1xa+xb+xcxa\dfrac{1}{\dfrac{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}}{{{x}^{a}}}} which is equal to xa+xb+xcxa\dfrac{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}}{{{x}^{a}}}.
Now, let’s consider 2nd term of the expression which is,
11+xab+xcb\dfrac{1}{1+{{x}^{a-b}}+{{x}^{c-b}}}
In this we will use an identity of exponents which say that,
xmxa = xma\dfrac{{{x}^{m}}}{{{x}^{a}}}\ =\ {{x}^{m-a}}
So, we can write xab{{x}^{a-b}} as xaxb\dfrac{{{x}^{a}}}{{{x}^{b}}} and xcb{{x}^{c-b}} as xcxb\dfrac{{{x}^{c}}}{{{x}^{b}}} so we can re-write 2nd term as, 11+xaxb+xcxb\dfrac{1}{1+\dfrac{{{x}^{a}}}{{{x}^{b}}}+\dfrac{{{x}^{c}}}{{{x}^{b}}}}
Now, we will take L.C.M. we get,
1xb+xa+xcxb\dfrac{1}{\dfrac{{{x}^{b}}+{{x}^{a}}+{{x}^{c}}}{{{x}^{b}}}} which is equal to xbxb+xa+xc\dfrac{{{x}^{b}}}{{{x}^{b}}+{{x}^{a}}+{{x}^{c}}}.
Now let’s consider 3rd term of the expression which is,
11+xbc+xac\dfrac{1}{1+{{x}^{b-c}}+{{x}^{a-c}}}
In this we will use an identity of exponents which say that,
xcxa=xmn\dfrac{{{x}^{c}}}{{{x}^{a}}}={{x}^{m-n}}
So we can write xbc{{x}^{b-c}} as xbxc\dfrac{{{x}^{b}}}{{{x}^{c}}} and xac{{x}^{a-c}} as xaxc\dfrac{{{x}^{a}}}{{{x}^{c}}} so we can get third term as,
11+xbxc+xaxc\dfrac{1}{1+\dfrac{{{x}^{b}}}{{{x}^{c}}}+\dfrac{{{x}^{a}}}{{{x}^{c}}}}
Now, we will take L.C.M we get,
1xc+xb+xaxc\dfrac{1}{\dfrac{{{x}^{c}}+{{x}^{b}}+{{x}^{a}}}{{{x}^{c}}}} which is equal to xcxc+xb+xa\dfrac{{{x}^{c}}}{{{x}^{c}}+{{x}^{b}}+{{x}^{a}}}
So now we can write the expression
11+xba+xca+11+xab+xcb+11+xbc+xac\dfrac{1}{1+{{x}^{b-a}}+{{x}^{c-a}}}+\dfrac{1}{1+{{x}^{a-b}}+{{x}^{c-b}}}+\dfrac{1}{1+{{x}^{b-c}}+{{x}^{a-c}}} as xaxa+xb+xc+xbxa+xb+xc+xcxa+xb+xc\dfrac{{{x}^{a}}}{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}}+\dfrac{{{x}^{b}}}{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}}+\dfrac{{{x}^{c}}}{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}}
Which can be written as,
xa+xb+xcxa+xb+xc\dfrac{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}}{{{x}^{a}}+{{x}^{b}}+{{x}^{c}}} which is equal to 1.
Hence, proved.

Note: We can simplify the expression by multiplying with xa,xb,xc{{x}^{a}},{{x}^{b}},{{x}^{c}} to numerator and denominator to the respective terms and then simplify it to get the respective answer.