Solveeit Logo

Question

Question: Prove that \(\csc \left( {{\csc }^{-1}}x \right)=x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\...

Prove that csc(csc1x)=x,x(,1][1,)\csc \left( {{\csc }^{-1}}x \right)=x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Explanation

Solution

Hint: Use the fact that if y=csc1xy={{\csc }^{-1}}x, then x=cscyx=\csc y. Assume y=csc1xy={{\csc }^{-1}}x. Write csc(csc1x)\csc \left( {{\csc }^{-1}}x \right) in terms of y and hence prove the above result.

Complete step-by-step answer:
Before dwelling into the proof of the above question, we must understand how csc1x{{\csc }^{-1}}x is defined even when cscx\csc x is not one-one.
We know that cosecx is a periodic function.
Let us draw the graph of cosecx

As is evident from the graph cosecx is a repeated chunk of the graph of cosecx within the interval \left[ A,B \right]-\left\\{ 0,\pi \right\\} , and it attains all its possible values in the interval \left[ A,C \right]-\left\\{ 0 \right\\}, where A=π2,B=3π2A=\dfrac{-\pi }{2},B=\dfrac{3\pi }{2} and C=π2C=\dfrac{\pi }{2}
Hence if we consider cosecx in the interval [A, C], we will lose no value attained by cosecx, and at the same time, cosecx will be one-one and onto.
Hence csc1x{{\csc }^{-1}}x is defined over the Domain (,1][1,)\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right), with codomain \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\} as in the Domain \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\}, cosecx is one-one and Rcscx=(,1][1,){{R}_{\csc x}}=\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right).
Now since csc1x{{\csc }^{-1}}x is the inverse of cosecx it satisfies the fact that if y=csc1xy={{\csc }^{-1}}x, then cscy=x\csc y=x.
So let y=csc1xy={{\csc }^{-1}}x
Hence we have cosecy = x.
Now csc(csc1x)=cscy\csc \left( {{\csc }^{-1}}x \right)=\csc y
Hence we have csc(csc1x)=x\csc \left( {{\csc }^{-1}}x \right)=x.
Also as x is in the Domain of csc1x{{\csc }^{-1}}x, we have x(,1][1,)x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right).
Hence csc(csc1x)=x,x(,1][1,)\csc \left( {{\csc }^{-1}}x \right)=x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Note: [1] The above-specified codomain for csc1x{{\csc }^{-1}}x is called principal branch for csc1x{{\csc }^{-1}}x. We can select any branch as long as cscx\csc x is one-one and onto and Range =(,1][1,)=\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right). Like instead of \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\}, we can select the interval \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]-\left\\{ \pi \right\\}. The proof will remain the same as above.