Solveeit Logo

Question

Question: Prove that \(\cot \dfrac{\pi }{4} = \sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 \)...

Prove that cotπ4=2+3+4+6\cot \dfrac{\pi }{4} = \sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6

Explanation

Solution

Here in this question we must know the following properties and identities of trigonometric functions.
They are mentioned below: -
cotA=(1+cos2A)sin2A\cot A = \dfrac{{(1 + \cos 2A)}}{{\sin 2A}}
Conversion of radian into degree is done by multiplying that angle by 180π\dfrac{{180}}{\pi }
cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B

Complete step-by-step answer:
First of all we will convert the angle which is given in radian into degree so that the calculation part can become a little less confusing.
cotπ4=cot(π4×180π)\cot \dfrac{\pi }{4} = \cot (\dfrac{\pi }{4} \times \dfrac{{180}}{\pi })
cot1804=cot7.5=cot152\Rightarrow \cot \dfrac{{180}}{4} = \cot 7.5 = \cot \dfrac{{15}}{2}
Now we will apply cotA=(1+cos2A)sin2A\cot A = \dfrac{{(1 + \cos 2A)}}{{\sin 2A}} identity so that fractional part can be eliminated. cot152=(1+cos2×152)sin2×152\cot \dfrac{{15}}{2} = \dfrac{{(1 + \cos 2 \times \dfrac{{15}}{2})}}{{\sin 2 \times \dfrac{{15}}{2}}}
(1+cos15)sin15\Rightarrow \dfrac{{(1 + \cos 15)}}{{\sin 15}} (Cancelling 2 from numerator and denominator)
For finding the value of cos15\cos 15 we know that cos15=cos(4530)\cos 15 = \cos (45 - 30) so applying identity cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B
cos(4530)=cos45cos30+sin45sin30\Rightarrow \cos (45 - 30) = \cos 45\cos 30 + \sin 45\sin 30 (Here A=45 and B=30)
12×32+12×12\Rightarrow \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2} (Putting values of trigonometric functions)
3+122\Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} (Taking L.C.M)
3+122×22\Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} (Rationalising by multiplying and dividing 2\sqrt 2 )
2(3+1)2×2=2(3+1)4\Rightarrow \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{{2 \times 2}} = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4}
cos15=2(3+1)4\therefore \cos 15 = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4}
Now putting value of cos15\cos 15in (1+cos15)sin15\dfrac{{(1 + \cos 15)}}{{\sin 15}}
(1+2(3+1)4)sin15\Rightarrow \dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\sin 15}}
For sin15\sin 15 we will use cos15\cos 15 because cosθ=bh\cos \theta = \dfrac{b}{h}and sinθ=ph\sin \theta = \dfrac{p}{h}where p=perpendicular, b=base and h=hypotenuse.
cos15=2(3+1)4=bh\therefore \cos 15 = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4} = \dfrac{b}{h}0
h=p2+b2h = \sqrt {{p^2} + {b^2}} (By Pythagoras theorem)
p=h2b2\Rightarrow p = \sqrt {{h^2} - {b^2}}
p=42[2(3+1])2\Rightarrow p = \sqrt {{4^2} - {{[\sqrt 2 (\sqrt 3 + 1])}^2}}
Further simplifying we will get
p=16[2(3+1+23]2)\Rightarrow p = \sqrt {16 - [2{{(3 + 1 + 2\sqrt 3 ]}^2})} (Expanding(a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab)
p=16[2(4+23])\Rightarrow p = \sqrt {16 - [2(4 + 2\sqrt 3 ])}
p=16[8+43]\Rightarrow p = \sqrt {16 - [8 + 4\sqrt 3 ]} (Multiplying 2 inside)
p=16843\Rightarrow p = \sqrt {16 - 8 - 4\sqrt 3 }
p=843\Rightarrow p = \sqrt {8 - 4\sqrt 3 } (Taking 4 outside the root)
p=223\therefore p = 2\sqrt {2 - \sqrt 3 }
p=2234\Rightarrow p = \dfrac{{2\sqrt {2 - \sqrt 3 } }}{4}Or 2(31)4\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4} because square root of 23\sqrt {2 - \sqrt 3 } is (31)2\dfrac{{(\sqrt 3 - 1)}}{{\sqrt 2 }}
You can directly write sine value from cosine value without doing so much of calculation by just making a sign opposite.
Now putting values of sin15\sin 15 in (1+2(3+1)4)sin15\dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\sin 15}} we will get
(1+2(3+1)4)2(31)4\Rightarrow \dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}}}
(4+2(3+1)4)2(31)4\Rightarrow \dfrac{{(\dfrac{{4 + \sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}}} (Cancelling 4 from both denominator terms)4+2(3+1)2(31)=4+6+262 \Rightarrow \dfrac{{4 + \sqrt 2 (\sqrt 3 + 1)}}{{\sqrt 2 (\sqrt 3 - 1)}} = \dfrac{{4 + \sqrt 6 + \sqrt 2 }}{{\sqrt 6 - \sqrt 2 }}
Now rationalising the denominator irrational term
\Rightarrow \dfrac{{4 + \sqrt 6 + \sqrt 2 }}{{\sqrt 6 - \sqrt 2 }} \times \dfrac{{\sqrt 6 + \sqrt 2 }}{{\sqrt 6 + \sqrt 2 }}$$$$ \Rightarrow \dfrac{{(4 + \sqrt 6 + \sqrt 2 )(\sqrt 6 + \sqrt 2 )}}{{6 - 2}} = \dfrac{{4\sqrt 6 + 4\sqrt 2 + 6 + \sqrt 6 \times \sqrt 2 + \sqrt 6 \times \sqrt 2 + 2}}{4}$$$$ \Rightarrow \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 2(\sqrt {12} )}}{4} = \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 2(2\sqrt 3 )}}{4}$$$$ \Rightarrow \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 4\sqrt 3 }}{4} = \sqrt 6 + \sqrt 2 + 2 + \sqrt 3
6+2+4+3\therefore \sqrt 6 + \sqrt 2 + \sqrt 4 + \sqrt 3 (2 can be written as 4\sqrt 4 )
Therefore cotπ4=2+3+4+6\cot \dfrac{\pi }{4} = \sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6
Hence proved.

Note: Students should know basic values of trigonometric functions which can boost their calculation part some of the values are as follows: -
cos30=32,sin30=12\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {30^ \circ } = \dfrac{1}{2}
cos60=12,sin30=32\cos {60^ \circ } = \dfrac{1}{2},\sin {30^ \circ } = \dfrac{{\sqrt 3 }}{2}
cos45=12,sin45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}
cos90=0,sin90=1\cos {90^ \circ } = 0,\sin {90^ \circ } = 1
cos180=1,sin180=0\cos {180^ \circ } = 1,\sin {180^ \circ } = 0
Also while doing rationalisation some students make mistakes by multiplying with the same term but that is not correct. The same term with opposite signs should be multiplied and divided.