Solveeit Logo

Question

Question: Prove that \(\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\c...

Prove that cotA+cot(60+A)+cos(120+A)=3cot3A\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A.

Explanation

Solution

In this question, we have to prove cotA+cot(60+A)+cos(120+A)=3cot3A\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A.
For solving this, we will use the various trigonometric formula given by:
(i) Summation of angles in cot function is given as cot(A+B)=cotAcotB1cotB+cotA\cot \left( A+B \right)=\dfrac{\cot A\cdot \cot B-1}{\cot B+\cot A}.
(ii) cot60\cot {{60}^{\circ }} is equal to 13\dfrac{1}{\sqrt{3}}.
(iii) cot120=cot(18060)\cot {{120}^{\circ }}=\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right). cotθ\cot \theta is negative in II quadrant so cot(18060)=cot60=13\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cot {{60}^{\circ }}=\dfrac{-1}{\sqrt{3}}.
(iv) cot3θ=cot3θ3cotθ3cot2θ1\cot 3\theta =\dfrac{{{\cot }^{3}}\theta -3\cot \theta }{3{{\cot }^{2}}\theta -1}.

Complete step-by-step solution
Here we are given the equation as cotA+cot(60+A)+cos(120+A)=3cot3A\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A.
We need to prove the left-hand side to be equal to the right-hand side.
Taking left hand side, cotA+cot(60+A)+cos(120+A)\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right).
We know that cot(A+B)=cotAcotB1cotB+cotA\cot \left( A+B \right)=\dfrac{\cot A\cdot \cot B-1}{\cot B+\cot A}.
So let us apply this on cot(60+A) and cos(120+A)\cot \left( {{60}^{\circ }}+A \right)\text{ and }\cos \left( {{120}^{\circ }}+A \right) we get:
cotA+cot60cotA1cotA+cot60+cot120cotA1cotA+cot120\cot A+\dfrac{\cot {{60}^{\circ }}\cdot \cot A-1}{\cot A+\cot {{60}^{\circ }}}+\dfrac{\cot {{120}^{\circ }}\cdot \cot A-1}{\cot A+\cot {{120}^{\circ }}}.
We know from trigonometric ratio table that cot60=13\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}} and cot120\cot {{120}^{\circ }} can be written as cot(18060)\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right) so we get:
cotA+13cotA1cotA+13+cot(18060)cotA1cotA+cot(18060)\cot A+\dfrac{\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A+\dfrac{1}{\sqrt{3}}}+\dfrac{\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)\cdot \cot A-1}{\cot A+\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)}.
We know that, cotangent is negative in II quadrant and 180θ{{180}^{\circ }}-\theta will bring cot in II quadrant, so cot(180θ)\cot \left( {{180}^{\circ }}-\theta \right) will be equal to cotθ-\cot \theta .
Hence, cot(18060)=cot60=13\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cot {{60}^{\circ }}=\dfrac{-1}{\sqrt{3}} putting in the value we get:
cotA+13cotA1cotA+13+13cotA1cotA13\cot A+\dfrac{\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A+\dfrac{1}{\sqrt{3}}}+\dfrac{-\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A-\dfrac{1}{\sqrt{3}}}.
Now let us take LCM in the denominator for second and third term, we get:
cotA+(13cotA1)(cotA13)+(13cotA1)(cotA+13)(cotA+13)(cotA13)\cot A+\dfrac{\left( \dfrac{1}{\sqrt{3}}\cot A-1 \right)\left( \cot A-\dfrac{1}{\sqrt{3}} \right)+\left( -\dfrac{1}{\sqrt{3}}\cot A-1 \right)\left( \cot A+\dfrac{1}{\sqrt{3}} \right)}{\left( \cot A+\dfrac{1}{\sqrt{3}} \right)\left( \cot A-\dfrac{1}{\sqrt{3}} \right)}.
Applying (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} in the denominator on the second term and simplifying the numerator of the second term by opening bracket, we get:
cotA+(13cot2AcotA13cotA+13)+(13cot2AcotA13cotA13)cot2A13\cot A+\dfrac{\left( \dfrac{1}{\sqrt{3}}{{\cot }^{2}}A-\cot A-\dfrac{1}{3}\cot A+\dfrac{1}{\sqrt{3}} \right)+\left( -\dfrac{1}{\sqrt{3}}{{\cot }^{2}}A-\cot A-\dfrac{1}{3}\cot A-\dfrac{1}{\sqrt{3}} \right)}{{{\cot }^{2}}A-\dfrac{1}{3}}.
Further simplifying the numerator of the second term we get:
cotA+(2cotA23cotA)cot2A13\cot A+\dfrac{\left( -2\cot A-\dfrac{2}{3}\cot A \right)}{{{\cot }^{2}}A-\dfrac{1}{3}}.
Now taking LCM in the denominator of both terms we get:
cotA(cot2A13)2cotA23cotAcot2A13 cot3A13cotA2cotA23cotAcot2A13 \begin{aligned} & \dfrac{\cot A\left( {{\cot }^{2}}A-\dfrac{1}{3} \right)-2\cot A-\dfrac{2}{3}\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\\ & \Rightarrow \dfrac{{{\cot }^{3}}A-\dfrac{1}{3}\cot A-2\cot A-\dfrac{2}{3}\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\\ \end{aligned}.
Now adding 13cotA and 23cotA\dfrac{1}{3}\cot A\text{ and }\dfrac{2}{3}\cot A we get:
cot3A33cotA2cotAcot2A13\Rightarrow \dfrac{{{\cot }^{3}}A-\dfrac{3}{3}\cot A-2\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}}.
Cancelling 3 we get:
cot3AcotA2cotAcot2A13 cot3A3cotAcot2A13 \begin{aligned} & \Rightarrow \dfrac{{{\cot }^{3}}A-\cot A-2\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\\ & \Rightarrow \dfrac{{{\cot }^{3}}A-3\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\\ \end{aligned}.
Taking LCM of 3 in the denominator of the denominator of the term we get:
cot3A3cotA3cot2A13\Rightarrow \dfrac{{{\cot }^{3}}A-3\cot A}{\dfrac{3{{\cot }^{2}}A-1}{3}}.
Taking 3 in the numerator we get:
3(cot3A3cotA3cot2A1)\Rightarrow 3\left( \dfrac{{{\cot }^{3}}A-3\cot A}{3{{\cot }^{2}}A-1} \right).
Now we know that cot3θ=cot3θ3cotθ3cot2θ1\cot 3\theta =\dfrac{{{\cot }^{3}}\theta -3\cot \theta }{3{{\cot }^{2}}\theta -1} so we get:
3cotA3\cot A.
Which is equal to the right-hand side.
Hence proved.

Note: This sum is very tricky with lots of complex calculations, so students should do it carefully step by step without shortcuts. There are huge chances of making mistakes in positive or negative signs. Take LCM carefully. Keep in mind all the trigonometric formulas for solving this sum. cot120\cot {{120}^{\circ }} can also be found using cot120=cot(90+30)=tan30=13\cot {{120}^{\circ }}=\cot \left( {{90}^{\circ }}+{{30}^{\circ }} \right)=-\tan {{30}^{\circ }}=\dfrac{-1}{\sqrt{3}}.