Question
Question: Prove that \(\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\c...
Prove that cotA+cot(60∘+A)+cos(120∘+A)=3cot3A.
Solution
In this question, we have to prove cotA+cot(60∘+A)+cos(120∘+A)=3cot3A.
For solving this, we will use the various trigonometric formula given by:
(i) Summation of angles in cot function is given as cot(A+B)=cotB+cotAcotA⋅cotB−1.
(ii) cot60∘ is equal to 31.
(iii) cot120∘=cot(180∘−60∘). cotθ is negative in II quadrant so cot(180∘−60∘)=−cot60∘=3−1.
(iv) cot3θ=3cot2θ−1cot3θ−3cotθ.
Complete step-by-step solution
Here we are given the equation as cotA+cot(60∘+A)+cos(120∘+A)=3cot3A.
We need to prove the left-hand side to be equal to the right-hand side.
Taking left hand side, cotA+cot(60∘+A)+cos(120∘+A).
We know that cot(A+B)=cotB+cotAcotA⋅cotB−1.
So let us apply this on cot(60∘+A) and cos(120∘+A) we get:
cotA+cotA+cot60∘cot60∘⋅cotA−1+cotA+cot120∘cot120∘⋅cotA−1.
We know from trigonometric ratio table that cot60∘=31 and cot120∘ can be written as cot(180∘−60∘) so we get:
cotA+cotA+3131cotA−1+cotA+cot(180∘−60∘)cot(180∘−60∘)⋅cotA−1.
We know that, cotangent is negative in II quadrant and 180∘−θ will bring cot in II quadrant, so cot(180∘−θ) will be equal to −cotθ.
Hence, cot(180∘−60∘)=−cot60∘=3−1 putting in the value we get:
cotA+cotA+3131cotA−1+cotA−31−31cotA−1.
Now let us take LCM in the denominator for second and third term, we get:
cotA+(cotA+31)(cotA−31)(31cotA−1)(cotA−31)+(−31cotA−1)(cotA+31).
Applying (a+b)(a−b)=a2−b2 in the denominator on the second term and simplifying the numerator of the second term by opening bracket, we get:
cotA+cot2A−31(31cot2A−cotA−31cotA+31)+(−31cot2A−cotA−31cotA−31).
Further simplifying the numerator of the second term we get:
cotA+cot2A−31(−2cotA−32cotA).
Now taking LCM in the denominator of both terms we get:
cot2A−31cotA(cot2A−31)−2cotA−32cotA⇒cot2A−31cot3A−31cotA−2cotA−32cotA.
Now adding 31cotA and 32cotA we get:
⇒cot2A−31cot3A−33cotA−2cotA.
Cancelling 3 we get:
⇒cot2A−31cot3A−cotA−2cotA⇒cot2A−31cot3A−3cotA.
Taking LCM of 3 in the denominator of the denominator of the term we get:
⇒33cot2A−1cot3A−3cotA.
Taking 3 in the numerator we get:
⇒3(3cot2A−1cot3A−3cotA).
Now we know that cot3θ=3cot2θ−1cot3θ−3cotθ so we get:
3cotA.
Which is equal to the right-hand side.
Hence proved.
Note: This sum is very tricky with lots of complex calculations, so students should do it carefully step by step without shortcuts. There are huge chances of making mistakes in positive or negative signs. Take LCM carefully. Keep in mind all the trigonometric formulas for solving this sum. cot120∘ can also be found using cot120∘=cot(90∘+30∘)=−tan30∘=3−1.