Solveeit Logo

Question

Question: Prove that \(\cot A + \cot \left( {{{60}^ \circ } + A} \right) + \cot \left( {{{120}^ \circ } + A} \...

Prove that cotA+cot(60+A)+cot(120+A)=3cot3A\cot A + \cot \left( {{{60}^ \circ } + A} \right) + \cot \left( {{{120}^ \circ } + A} \right) = 3\cot 3A

Explanation

Solution

Hint : A very important formula of cotθ\cot \theta is used here. There is also requirement of value of cot(60)\cot \left( {{{60}^ \circ }} \right) and cot(120)\cot \left( {{{120}^ \circ }} \right) to simplify this question and there is also requirement of value of cot(3θ)\cot \left( {3\theta } \right). This tells us the importance of formulas in trigonometry and also in this question.
Formula used: 1.cot(C+D)=cotCcotD1cotC+cotD1.\,\,\cot \left( {C + D} \right) = \dfrac{{\cot C\cot D - 1}}{{\cot C + \cot D}}
2.cot3θ=cot3θ3cotθ3cot2θ12.\,\,\cot \,3\theta = \dfrac{{\cot 3\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}

Complete step-by-step answer :
In the given question,
We know that
cot(C+D)=cotCcotD1cotC+cotD\,\cot \left( {C + D} \right) = \dfrac{{\cot C\cot D - 1}}{{\cot C + \cot D}}
We have,
L.H.S=cotA+cot(60+A)+cot(120+A)L.H.S = \,\cot A + \cot \left( {{{60}^ \circ } + A} \right) + \cot \left( {{{120}^ \circ } + A} \right)
Now, using the above formula
cotA+cot60×cotA1cotA+cot60+cot120×cotA1cotA+cot120\Rightarrow \cot A + \dfrac{{\cot {{60}^ \circ } \times \cot A - 1}}{{\cot A + \cot {{60}^ \circ }}} + \dfrac{{\cot {{120}^ \circ } \times \cot A - 1}}{{\cot A + \cot {{120}^ \circ }}}
We know that, cot60=13andcot120=13\cot {60^ \circ } = \dfrac{1}{{\sqrt 3 }}\,\,and\,\,\cot {120^ \circ } = \dfrac{{ - 1}}{{\sqrt 3 }}
cotA+13cotA1cotA+13+13cotA1cotA13\Rightarrow \cot A + \dfrac{{\dfrac{1}{{\sqrt 3 }}\cot A - 1}}{{\cot A + \dfrac{1}{{\sqrt 3 }}}} + \dfrac{{\dfrac{{ - 1}}{{\sqrt 3 }}\cot A - 1}}{{\cot A - \dfrac{1}{{\sqrt 3 }}}}
Now, taking L.C.M
cotA+(13cotA1)(cotA13)+(13cotA1)(cotA+13)cot2A13\Rightarrow \cot A + \dfrac{{\left( {\dfrac{1}{{\sqrt 3 }}\cot A - 1} \right)\left( {\cot A - \dfrac{1}{{\sqrt 3 }}} \right) + \left( {\dfrac{{ - 1}}{{\sqrt 3 }}\cot A - 1} \right)\left( {\cot A + \dfrac{1}{{\sqrt 3 }}} \right)}}{{{{\cot }^2}A - \dfrac{1}{3}}}
cotA+13cot2AcotA13cotA+1313cot2AcotA13cotA13cot2A13\Rightarrow \cot A + \dfrac{{\dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A - \dfrac{1}{{\sqrt 3 }}}}{{{{\cot }^2}A - \dfrac{1}{3}}}
Again, taking L.C.M
cot3A13cotA+13cot2AcotA13cotA+1313cot2AcotA13cotA133cot2A13\Rightarrow \dfrac{{{{\cot }^3}A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A - \dfrac{1}{{\sqrt 3 }}}}{{\dfrac{{3{{\cot }^2}A - 1}}{3}}}
cot3A33cotA2cotA3cot2A13\Rightarrow \dfrac{{{{\cot }^3}A - \dfrac{3}{3}\cot A - 2\cot A}}{{\dfrac{{3{{\cot }^2}A - 1}}{3}}}
3(cot3A3cotA)(3cot2A1)\Rightarrow \dfrac{{3\left( {{{\cot }^3}A - 3\cot A} \right)}}{{\left( {3{{\cot }^2}A - 1} \right)}}
Now, using the formula
[cot3θ=cot3θ3cotθ3cot2θ1]\left[ {\,\cot \,3\theta = \dfrac{{\cot 3\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}} \right]
On substituting the value, we have
3cot3θ=R.H.S\Rightarrow 3\cot 3\theta = R.H.S
Therefore, L.H.S=R.H.SL.H.S = R.H.S
Hence, proved.

Note : While doing the questions of trigonometry one can remember that the most important thing here is the formula. If you have a very good grip on formula then you can easily master this topic. Also knowing the conversion of one trigonometric identity into another is a very important aspect. Remember the values of some specific degrees of all trigonometric functions